VBS Measurements at ATLAS

Todd Zenger

On Behalf of the ATLAS Collaboration

September 12, 2023

Introduction

- Probing new VBS processes at ATLAS
- VBS sensitive to EWSB and probes quartic gauge couplings
- VBS features:
 - Two tagging jets with large rapidity separation, Δy
 - Large dijet mass, m_{jj}

2

Overview

- In this talk: recent ATLAS VBS measurements
 - Same-Sign $W^{\pm}W^{\pm}jj$
 - Opposite-Sign $W^{\pm}W^{\mp}jj$
 - $Z(\ell\ell)\gamma jj$
 - Z*Zjj*
- In backup:
 - Z(νν)γjj

VBF, VBS, and Triboson Cross Section Measurements Status: February 2022

ATL-PHYS-PUB-2022-009

Same-Sign $W^{\pm}W^{\pm}jj$

- Largest EW to QCD ratio compared to other VBS interactions
 - No gluon-gluon fusion or quark-gluon QCD VVjj interactions from same-sign WW
- Measure fiducial and differential cross section using 139 fb^{-1} luminosity
- Previous measurement Phys. Rev. Lett. 123 (2019) 161801
 - 6.5 σ observation with 36.1 fb^{-1} integrated luminosity

4

		Me
_		M
		M
Same-Sign I	// - /// - // RPCUUC	Sн
		Ро
•		

W[±]W[±]ii EW (bin 2)

W[±]W[±]jj QCD

Non-prompt

Other prompt

Tot. Uncert.

2500

m_{ii} [GeV]

Description	$\sigma^{ m EW}_{ m fid}$, fb	$\sigma_{ m fid}^{ m EW+Int+QCD}$, fb
Measured cross section	2.88 ± 0.21 (stat.) ± 0.19 (syst.)	3.35 ± 0.22 (stat.) ± 0.20 (syst.)
MG_AMC@NLO+Herwig	2.53 ± 0.04 (PDF) $\pm_{0.19}^{0.22}$ (scale)	2.93 ± 0.05 (PDF) $\pm_{0.27}^{0.34}$ (scale)
MG_AMC@NLO+Pythia	$2.55 \pm 0.04 (PDF) \pm_{0.19}^{0.22} (scale)$	$2.94 \pm 0.05 (PDF) \pm_{0.27}^{0.33} (scale)$
Sherpa	$2.44 \pm 0.03 (PDF) \pm_{0.27}^{0.40} (scale)$	2.80 ± 0.03 (PDF) $\pm_{0.36}^{0.53}$ (scale)
Powheg Box +Pythia	2.67	_

Fiducial and differential measurements agree with SM

Post-fit distribution of m_{ll} (left) and m_{ji} (right) for differential cross section

EW $W^{\pm}W^{\pm}$ and inclusive $W^{\pm}W^{\pm}$ differential cross section measured with variables: m_{ll} , m_T , m_{jj} , $N_{gap \ jets}, \xi_{j3}$

Differential cross section measurement of EW $W^{\pm}W^{\pm}jj m_{ll}$ (left) and m_{ij} (right) 5

Opposite-Sign $W^{\pm}W^{\mp}jj$

- Choose $W^{\pm}W^{\mp}jj \rightarrow e^{\pm}\nu\mu^{\mp}\nu jj$ for enhanced detector sensitivity compared to same-flavor decays
- Use neural network (NN) to distinguish signal from largest irreducible backgrounds top quark production and $W^{\pm}W^{\mp}jj$ QCD

Opposite-Sign $W^{\pm}W^{\mp}jj$ Results

- Set three floating parameters Strong W[±]W[∓]jj, EW W[±]W[∓]jj, top
- Use split SR with two jet regions 2 jets and 3 jets SRs
- Signal observed with 7.1 σ while 6.2 σ expected with background only hypothesis
- Cross section measured 2.65^{+0.52}_{-0.48} fb observed with 2.20^{+0.14}_{-0.13} fb expected from POWHEG BOX 2
- Results agree with SM

(a) Two jets

(b) Three jets

$Z(\ell\ell)\gamma jj$

- Interesting due to probing the neutral quartic coupling
- Larger cross section than ZZ EW process
- Measure fiducial and differential fiducial cross section
- Improves previous ATLAS measurement at $36 f b^{-1}$ integrated luminosity
 - Phys. Lett. B 803 (2020) 135341
 - 4.1σ evidence

$Z(\ell \ell)\gamma jj$ Results

- Measured differential cross section $Z\gamma jj$ EW and $Z\gamma jj$ inclusive
- Zγjj EW extracted using maximum-likelihood fit with m_{jj}

 $Z\gamma jj$ EW SR: $m_{jj} > 500 GeV$, $\zeta < 0.4$ $Z\gamma jj$ inclusive SR: $m_{jj} > 150 GeV$, $\zeta < 0.4$

• First observation of $Z(\ell \ell) \gamma j j$ in ATLAS

	Data stat.	MC stat.	Background	Reco	EW mod.	QCD mod.	Total
$\Delta\sigma_{EW}/\sigma_{EW}$ [%]	±9	±1	±1	±4	+8 -6	±2	±13
$\Delta\sigma_{Z\gamma}/\sigma_{Z\gamma}$ [%]	±3	±1	±2	+4 -3	+7 -6	±9	+12 -11
			Pred	licte	d N	<i>leasure</i>	d
$Z\gamma \ { m EW}$	cross s	ection	$3.5 \pm$	0.2	fb 3 .	6 ± 0.5	fb
$Z\gamma \ { m crc}$	oss sect	tion	15.7^{+}_{-}	$\frac{-5.0}{-2.6}$	b 16	$5.8^{+2.0}_{-1.8}$	fb

10

ZZjj

- Measure differential cross section of ZZjj EW production
 - $ZZ \rightarrow 4\ell$
- ZZjj EW sensitive to WWZZ and WWZ self interaction couplings
- ZZjj QCD sensitive to perturbative calculations
- Previous ZZjj observation paper:
 - Nature Phys. 19 (2023) 237
 - Observed 5.7σ

ZZjj Results

- Split signal region into:
 - VBS enhanced ($\zeta < 0.4$)
 - VBS suppressed ($\zeta > 0.4$)

$$\zeta = \left| \frac{\left[y_{4\ell} - 0.5(y_{j_1} + y_{j_2}) \right]}{\Delta y_{jj}} \right|$$

- Madgraph + Pythia8 strong 4*ljj* underestimate cross section in both signal regions
- Sherpa strong 4*ljj* in agreement with larger theoretical uncertainties

EFT Measurements

- SM measurements can provide hints of BSM
- New physics can induce anomalous quartic gauge couplings (aQGC)
- Extend SM using effective Lagrangian encoding aQGC
- Non-zero aQGCs violates tree-level unity at sufficiently higher energy scales

 $W^{\pm}W^{\pm}jj$ measurement of f_{M0}/Λ^4 Purple line: EFT contribution with no unitarization applied

with no unitarization applied Cyan line: EFT contribution with 700GeV cutoff

12

EFT Measurement Results

- Results of SM measurements places limits on EFT
- Table below: observed exclusion limits placed on the Wilson coefficients on dimension-8 operators at 95% confidence limit

	$W^{\pm}V$	$W^{\pm}jj$	Z(u i	$ar{ u})\gamma j j$	ZZ	Z_{jj}	
Parameter	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	
$f_{M0}/\Lambda^4 [TeV^{-4}]$	[-3.9, 3.8]	[-4.1, 4.1]	[-6.2, 6.2]	[-4.6, 4.6]			
$f_{M1}/\Lambda^4 [TeV^{-4}]$	$\left[-6.3, 6.6 ight]$	[-6.8, 7.0]	$[-1.0, 1.0] imes 10^1$	$\left[-7.7,7.7 ight]$			
$f_{M2}/\Lambda^4 [TeV^{-4}]$			[-2.6, 2.6]	[-1.9, 1.9]			30 $1 = 13 \text{ TeV}, 140 \text{ fb}^{-1}$
$f_{M7}/\Lambda^4 [TeV^{-4}]$	$\left[-9.3,8.8\right]$	$\left[-9.8,9.5\right]$					
$f_{S02}/\Lambda^4 [TeV^{-4}]$	[-5.5, 5.7]	[-5.9, 5.9]					
$f_{S1}/\Lambda^4 [TeV^{-4}]$	[-22.0, 22.5]	[-23.5, 23.6]					
$f_{T0}/\Lambda^4 [TeV^{-4}]$	[-0.34, 0.34]	[-0.36, 0.36]	$[-1.3, 1.2] imes 10^{-1}$	$[-9.4, 8.4] imes 10^{-2}$	[-0.98, 0.93]	[-1.00, 0.97] -	
$f_{T1}/\Lambda^4 [TeV^{-4}]$	[-0.158, 0.174]	[-0.174, 0.186]			[-1.2, 1.2]	[-1.3, 1.3]	
$f_{T2}/\Lambda^4 [TeV^{-4}]$	[-0.56, 0.70]	[-0.63, 0.74]			[-2.5, 2.4]	[-2.6, 2.5]	
$f_{T5}/\Lambda^4 [TeV^{-4}]$			$[-1.2, 1.3] \times 10^{-1}$	$[-8.8, 9.9] imes 10^{-2}$	[-2.5, 2.4]	[-2.6, 2.5]	-20 -20 - Expected 95% confidence interval
$f_{T6}/\Lambda^4 [TeV^{-4}]$					[-3.9, 3.9]	[-4.1, 4.1]	-30 Unitarity Bound
$f_{T7}/\Lambda^4 [TeV^{-4}]$					[-8.5, 8.1]	[-8.8, 8.4]	E.J
$f_{T8}/\Lambda^4 [TeV^{-4}]$			$[-8.1, 8.0] imes 10^{-2}$	$[-5.9, 5.9] imes 10^{-2}$	[-2.1, 2.1]	[-2.2, 2.2]	1 2 3 4 5 6 Futevi
$f_{T9}/\Lambda^4 [TeV^{-4}]$			$[-1.7, 1.7] \times 10^{-1}$	$[-1.3, 1.3] \times 10^{-1}$	$\left[-4.5, 4.5 ight]$	[-4.7, 4.7]	<u> </u>

Conclusions

- Many new VBS measurements from ATLAS this year!
- Results compatible with standard model
- Placed limits on EFT
- New analyses underway to probe VBS sectors in Run 3

Run 3 2022 $Z \rightarrow \mu\mu$ candidate <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions</u>

Backup

$Z(\nu\nu)\gamma jj$

- Measure Z decaying to two neutrinos
- Larger branching ratio to neutrinos compared to charged leptons
- $E_T^{\gamma} > 150 GeV$
- Previously observed in low energy phase space orthogonal to this measurement
 - Eur. Phys. J. C 82, 105 (2022)
 - $15 < E_T^{\gamma} < 110 GeV$
 - Observed with 5.2σ
- Use BDT classifier to separate signal and background

$Z(\nu\nu)\gamma jj$ Results

- Measured EW significance 3.2σ with expected 3.7σ
- Combined measurement with Eur. Phys. J. <u>C 82, 105 (2022)</u> to get EW significance of 6.3σ

	Value			
POI	Current analysis	Ref. [7]	Combination	
$\mu_{Z\gamma { m EWK}} \ \mu_{Z\gamma { m QCD}} \ \mu_{W\gamma}$	0.78 ± 0.33 1.21 ± 0.37 1.02 ± 0.22	1.03 ± 0.25 1.02 ± 0.41 1.01 ± 0.20	0.96 ± 0.19 1.17 ± 0.27 1.01 ± 0.13	

 $E_T^{\gamma} > 150 GeV \qquad 15 < E_T^{\gamma} < 110 GeV$

Same-Sign $W^{\pm}W^{\pm}jj$ Strategy

- One signal region and two control regions (WZ 3 ℓ and low $m_{i\,i}$)
- Largest backgrounds:
 - $W + Z/\gamma \sim 22\%$ of SR Yield
 - One lepton escaping detector
 - QCD produced events reweighted with CRs
 - Non-prompt leptons $\sim 12\%$ of SR Yield
 - W + jets and semileptonic $t\bar{t}$
 - Estimated using data-driven methods
 - Electron charge misidentification ${\sim}2.2\%$ of SR Yield
 - Z and dileptonic $t\bar{t}$
 - Estimated using data-driven methods

Signal Region Selection

_	
	Exactly two signal leptons with $p_{\rm T} > 27$ GeV and the same electric charge with $ \eta < 2.5$ for muons and
	with $ \eta < 2.47$ excluding $1.37 \le \eta \le 1.52$ for electrons
_	with $ \eta < 1.37$ in the <i>ee</i> channel
	$m_{\ell\ell'} \ge 20 \text{ GeV}$
	3rd lepton veto
_	$ m_{ee} - m_Z > 15$ GeV in the <i>ee</i> -channel
	$E_{\rm T}^{\rm miss} \ge 30 { m ~GeV}$
	At least two jets
	Leading and subleading jets satisfying $p_{\rm T}$ > 65 GeV and $p_{\rm T}$ > 35 GeV, respectively
	<i>b</i> -jet veto for jets with $p_{\rm T} > 20$ GeV and $ \eta < 2.5$
	$m_{\rm jj} \ge 500 \; { m GeV}$
	$ \Delta y_{jj} > 2$

WZ Control Region: signal region selection but with:

- 3 leptons
- $m_{jj} > 200 GeV$
- $m_{lll} > 106 GeV$

Low m_{jj} Control Region: signal region but with $200 < m_{jj} < 500 GeV$

Same-Sign $W^{\pm}W^{\pm}jj$ Systematics

Source	Impact [%]
Experimental	
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.8
$E_{\rm T}^{\rm miss}$ scale and resolution	0.2
<i>b</i> -tagging inefficiency	0.7
Background, misid. leptons	3.1
Background, charge misrec.	0.8
Pileup modelling	0.2
Luminosity	1.9
Modelling	
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.8
EW $W^{\pm}W^{\pm}jj$, QCD corrections	3.5
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.8
Int $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.1
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.3
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.9
Background, WZ scale, PDF & α_s	0.2
Background, WZ reweighting	1.7
Background, other	1.0
Model statistical	1.8
Experimental and modelling	6.7
Data statistical	7.4
Total	10.0

Opposite-Sign $W^{\pm}W^{\mp}jj$ Strategy

- One signal region (no b-tagged jets) and one control region (at least one b-tagged jet)
- Use two NNs one for 2 jets SR and one for 3 jets SR
 - Trained using W[±]W[∓]jj EW vs top and W[±]W[∓]jj QCD
- Largest Backgrounds:
 - Top quark $\sim 66\%$ of SR Yield
 - Single and pair production
 - $W^{\pm}W^{\mp}jj$ Strong Production ~24% of SR Yield

Signal Region Selection

Category	Requirements
Leptons	$p_{\rm T} > 27 {\rm GeV}$ $ \eta < 2.47 {\rm excluding} 1.37 < \eta < 1.52 {\rm (electrons)}$ $ \eta < 2.5 {\rm (muons)}$
	Identification: TightLH (electrons), Tight (muons) Isolation: Gradient (electrons), Tight_FixedRad (muons)
	$ d_0/\sigma_{d_0} < 5$ (electrons), $ d_0/\sigma_{d_0} < 3$ (muons) $ z_0 \sin \theta < 0.5$ mm
<i>b</i> -jets	$p_{\rm T} > 20 {\rm GeV}$ and $ \eta < 2.5$ (DL1r <i>b</i> -tagging with 85% efficiency)
Jets	$p_{\rm T} > 25 { m GeV}$ and $ \eta < 4.5$
Events	One electron and one muon with opposite electric charges No additional lepton with $p_T > 10$ GeV, Loose isolation, TightLH/MediumLH (electrons) and Loose (muons) identification $\zeta > 0.5$ $m_{e\mu} > 80$ GeV $E_T^{\text{miss}} > 15$ GeV Two or three jets No <i>b</i> -jet

$$\zeta = centrality = \min\left\{\left[\min(\eta_{\ell_1}, \eta_{\ell_2}) - \min(\eta_{j_1}, \eta_{j_2})\right], \left[\max(\eta_{j_1}, \eta_{j_2}) - \max(\eta_{\ell_1}, \eta_{\ell_2})\right]\right\}$$

Opposite-Sign $W^{\pm}W^{\mp}jj$ NN Variables

• 2 Jets:

- Leading jet p_T
- Sub-leading jet p_T
- *M*_{*ll*}
- ζ
- E_T^{miss} significance
- $\Delta \eta_{jj}$, two leading jets
- $\Delta \phi_{jj}$, two leading jets
- m_{lj} , from two leading leptons and jets
- 3 Jets:
 - Includes all above from 2 jet categories
 - 3^{rd} jet p_T
 - Centrality of 3rd jet

 $E_{\rm T}^{\rm miss}$ significance is computed as $\frac{|\vec{p}_{\rm T}^{miss}|^2}{\sigma_L^2 \times (1-\rho_{LT}^2)}$, where σ_L is the total variance in the direction longitudinal to $E_{\rm T}^{\rm miss}$, and ρ_{LT} is the correlation coefficient of the longitudinal (L) and transverse (T) measurements.

Third jet centrality =
$$\begin{vmatrix} y_{j_3} - \frac{1}{2} \times \frac{y_{j_1} + y_{j_2}}{y_{j_1} - y_{j_2}} \end{vmatrix}$$

Opposite-Sign $W^{\pm}W^{\mp}jj$ Systematics

Sources	$rac{\sqrt{(\Delta\mu)^2 - (\Delta\mu')^2}}{\mu}$ (%)
Monte Carlo statistical uncertainty	7.7
Top quark theoretical uncertainties	6.3
Signal theoretical uncertainties	5.8
Jet experimental uncertainties	4.9
Strong W^+W^-jj theoretical uncertainties	1.3
Luminosity	0.8
Mis-identified lepton uncertainty	0.5
<i>b</i> -tagging	0.4
Lepton experimental uncertainties	0.1
Others	0.3
Data statistical uncertainty	12.3
Top quark normalisation uncertainty	4.9
Strong W^+W^-jj normalisation uncertainty	2.2
Total uncertainty	18.5

$Z\gamma(\ell\ell)jj$ Strategy

- One SR ($\zeta(Z\gamma) < 0.4$) and one CR ($\zeta(Z\gamma) > 0.4$)
- Estimate $Z\gamma jj$ EW ~48% of SR Yield
- Largest Backgrounds:
 - $Z\gamma jj$ QCD ~44% of SR Yield
 - *Z*+jets, jet misidentified as photon
 - $t\bar{t}\gamma$
 - checked using data with different lepton flavor

Particle level selection:

Lepton	$p_{\rm T}^{\ell} > 20, 30 (\text{leading}) \text{ GeV}, \ \eta_{\ell} < 2.5$ $N_{\ell} \ge 2$
Photon	$E_{\rm T}^{\gamma} > 25 \text{ GeV}, \eta_{\gamma} < 2.37$ $E_{\rm T}^{\rm cone20} < 0.07 E_{\rm T}^{\gamma}$ $\Delta R(\ell, \gamma) > 0.4$
Jet	$p_{\rm T}^{j} > 50 \text{ GeV}, y_j < 4.4$ $ \Delta y > 1.0$ $m_{jj} > 150 \text{ GeV or } m_{jj} > 500 \text{ GeV}$ Remove jets if $\Delta R(\gamma, j) < 0.4$ or if $\Delta R(\ell, j) < 0.3$
Event	$m_{\ell\ell} > 40 \text{ GeV}$ $m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$ $\zeta(Z\gamma) < 0.4$ $N_{\text{jets}}^{\text{gap}} = 0$

$$\zeta(Z\gamma) = \left| \frac{y_{Z\gamma} - (y_{j_1} + y_{j_2})/2}{y_{j_1} - y_{j_2}} \right|$$

$Z\gamma(\ell\ell)jj$ Distributions

Post-fit distributions of m_{jj} in SR (left, $m_{jj} > 500 GeV$), CR (center, $m_{jj} > 500 GeV$), Extended SR (right, $m_{jj} > 150 GeV$)

$Z(\nu\nu)\gamma jj$ Strategy

• Largest Backgrounds:

- $Z(\nu\nu)\gamma jj$ QCD ~36% of SR Yield
- $W(\ell v)\gamma jj$ QCD ~25% of SR Yield
- $W(\ell \nu)\gamma jj$ QCD ~7% of SR Yield
- $t\bar{t}\gamma jj \sim 6\%$ of SR Yield

Figure 2: Definition of the regions used in the analysis.

⁶ Photon centrality relative to the two jets with the highest $p_{\rm T}$ values in the event is defined as γ -centrality = $\left|\frac{y(\gamma) - 0.5[y(j_1) + y(j_2)]}{y(j_1) - y(j_2)}\right|$ where $y = 0.5 \times \ln[(E + p_z)/(E - p_z)]$ is the rapidity of the objects (p_z is the z-component of the momentum of a particle).

Selections	Cut value
$E_{ m T}^{ m miss}$	> 120 GeV
$\dot{E}_{ ext{T}}^{oldsymbol{\gamma}}$	> 150 GeV
Number of isolated photons	$N_{\gamma} = 1$
Photon isolation	$E_{\rm T}^{\rm cone40} < 0.022 p_{\rm T} + 2.45 \text{ GeV}, p_{\rm T}^{\rm cone20} / p_{\rm T} < 0.05$
Number of jets	$N_{\text{jets}} \ge 2 \text{ with } p_{\text{T}} > 50 \text{ GeV}$
Overlap removal	$\Delta R(\gamma, \text{jet}) > 0.3$
Lepton veto	$N_e = 0, N_\mu = 0$
$ \Delta \phi(\gamma,ec{p}_{ ext{T}}^{ ext{ miss}}) $	> 0.4
$ \Delta \phi(j_1, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.3
$ \Delta \phi(j_2, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.3
m_{jj}	> 300 GeV
<i>v</i> -centrality	< 0.6

25

Table 2: Fiducial region definition.

$Z(\nu\nu)\gamma jj$ Systematics

Source of uncertainty	$\Delta\sigma/\sigma$ [%]
Experimental	
Jets	-3.2/+3.4
Electrons and photons	-0.3/+1.7
Muons	-0.4 / +0.5
$E_{\mathrm{T}}^{\mathrm{miss}}$	-1.8/+2.2
Pile-up modelling	-1.7/+3.2
Trigger efficiency	-0.9/+2.1
Luminosity	-1.2/+2.6
Theory	
$Z(\nu\bar{\nu})\gamma j j$ EWK/QCD interference	-0.6/+2.6
$Z(v\bar{v})\gamma jj$ EWK process	-6 /+12
$Z(\nu\bar{\nu})\gamma jj$ QCD process	-15 /+16
Other processes	-5.3/+7.7
Other sources	

Data-driven backgrounds	-0.9/+1.2
Pile-up background	-1.2/+2.6
$Z(\nu\bar{\nu})\gamma jj$ QCD m_{jj} modelling	-4.4/+4.4

$Z(\nu\nu)\gamma jj$ BDT Variables

- *m_{jj}*
- $\Delta y(j_1, j_2)$
- E_T^{miss}
- p_T -balance
- $\eta(j_2)$
- $\eta(\gamma)$
- $p_T(j_1)$
- p_T -balance (reduced)
- N_{jets}
- $\sin(|\Delta \varphi(j_1, j_2)/2|)$
- $\Delta y(j_1, \gamma)$

¹² The
$$p_{\rm T}$$
-balance = $\frac{|\vec{p}_{\rm T}^{\rm miss} + \vec{p}_{\rm T}^{\gamma} + \vec{p}_{\rm T}^{j_1} + \vec{p}_{\rm T}^{j_2}|}{E_{\rm T}^{\rm miss} + E_{\rm T}^{\gamma} + p_{\rm T}^{j_1} + p_{\rm T}^{j_2}}$.
¹³ The $p_{\rm T}$ -balance (reduced) = $\frac{|\vec{p}_{\rm T}^{\gamma} + \vec{p}_{\rm T}^{j_1} + \vec{p}_{\rm T}^{j_2}|}{E_{\rm T}^{\gamma} + p_{\rm T}^{j_1} + p_{\rm T}^{j_2}}$.

ZZjj Strategy

- Select two $\ell^+\ell^-$ pairs with smallest $|m_{\ell\ell}-m_Z|$
- Leptons must satisfy $m_{4\ell} > 130 GeV$
- Largest backgrounds:
 - Prompt backgrounds
 - WWZ, WZ, and $t\bar{t}Z$
 - Modeled with MC
 - Nonprompt backgrounds
 - WZjj and $t\overline{t}$
 - Use data driven estimates

ZZjj Systematics

Source	Uncertainty (%)	
	VBS-enhanced region	VBS -suppressed region
Luminosity	0.8 - 2.1	0.8 - 2.0
Leptons	0.8 - 1.6	1.0 - 1.5
Jets	2.7 - 18	3.4 – 13
Pile-up	0.0 - 2.5	0.0 - 0.7
Backgrounds	0.9 - 9.0	1.2 - 7.0
Theory modelling	0.6 - 7.5	1.2 - 8.8
Unfolding method	0.9 - 12	1.2 - 12
Total systematic	6 – 22	5 – 17