VBS: 3 slides of comparison Willigs Hunting Unit of Comparison Willing Strate S

- 1. WWjj opposite-sign (OS) leptons
- 2. WWjj with same-sign (SS)
- 3. W/Z + γ

* Newest results reported, full Run 2 statistics and leptonic channels (cleanest ones)

Elisabetta Gallo (DESY and University of Hamburg)

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

W+W-jj in two leptons, OS

PLB 841 (2023) 137495

Obs.+xsec

• Both ee/ $\mu\mu$, $e\mu$, observation 5.6 σ (5.0 σ expected)

cross-section in fiducial region (13% stat, 14% syst.)

ATLAS-CONF-2023-039 Obs. + xsec

- Only $e\mu$, split SR in 2, 3 jets
- Observation 7.1 σ (6.2 σ expected)
- Top well constrained in the fit from a CR

EWK WWjj 12% stat out of 18% total uncertainty, similar to CMS, but slightly better with just one channel. Slightly better experimental uncertainties?

- Sensitive channel, both experiment observation, in agreement with SM
- Top main backgrounds, especially challenging in eµ, constrained in both by CR with b-jets
- ATLAS splitting 2,3 jets. gains sensitivity of 1 σ
- -> but still better with only eµ channel
- Uncertainties dominated by statistical and theoretical
- Question: Can we find a common fiducial region to compare CMS-ATLAS?

WW jj in two leptons, SS

CMS-PAS-SMP-22-008

SS leptons, one as hadronic tau: 2.7 σ

- Largest background jets faking τ_h , estimated from data
- EW 2.7 σ (1.9 σ expected), but first measurement of this kind
- Still statistics limited

ATLAS-CONF-2023-023

e or μ : Obs.+ xsec+ BSM

- Largest EWK to QCD ratio, 52% purity
- Already observed in 2016 data, now moving to fiducial/differential cross sections
- Predictions generally OK, a bit lower especially for NLO, m_T not well reproduced

Also observed by CMS (W_L W_L) <u>PLB 812 (2021)</u> <u>136018</u>

- Golden channel SS e or µ
 provides the best
 sensitivity
- Moving to differential cross sections and BSM limits (aQGC, dim-8 EFTs)
- τ_h still statistically limited, large jet-fake background, but interesting to try it

• EFT interpretation

WorZ+*γ*jj

PRD 108 (2023) 032017

W γ jj Obs. + diff xsec + EFT-dim8

- EWK W γ jj process 6.0 σ observed (6.8 σ *expected*)
- QCD W γjj is the dominant background
- Photon background challenge

<u>arXiv:2305.19142</u> Zγ*jj* Obs. + xsec + diff

- Zγjj in dilepton + neutrino channel, observed process, differential cross section in II
- Sensitive to neutral quartic coupling

- Improved sensitivity in ATLAS Zγjj by adding the neutrino channel
- Both allow differential cross sections and aQGC interpretations
- Also dim-8 EFT operators
- ATLAS also ZZjj in 4l, full reconstruction of final state, less stat.
- VBS combined fit for EFT parameters in the future. Exploit Run2+Run 3 combinations, think of trigger strategies

W⁺W⁻ jj in two leptons, OS

Region	Final state	Requirements	Subregion
	eu /u.e	$m_{\rm T} > 60 {\rm GeV}$	$Z_{\ell\ell} < 1$
	ομ/μο	$m_{\ell\ell} > 50 \mathrm{GeV}$	$Z_{\ell\ell} > 1$
		no b jet with $p_{\rm T} > 20 {\rm GeV}$	
SR			$Z_{\ell\ell} < 1$
	ee	$m_{\ell\ell} > 120 \mathrm{GeV}$	$Z_{\ell\ell} > 1$
		$p_{\rm T}^{\rm miss} > 60 {\rm GeV}$	
		no b jet with $p_{\rm T} > 20 {\rm GeV}$	$Z_{\ell\ell} < 1$
	μμ	-	$Z_{\ell\ell} > 1$
	ец /ц.е.	$m_{\ell\ell} > 50 \mathrm{GeV}$	
	ομ/μο	at least one b jet with $p_T > 20 \text{ GeV}$	
$t\bar{t} + tW CR$			
	ee	$m_{\ell\ell} > 120 \text{GeV}$	
		$p_{\rm T}^{\rm mass} > 60 {\rm GeV}$	
	μμ	at least one b jet with $p_{\rm T} > 20 {\rm GeV}$	
		$m_{\rm T} < 60 {\rm GeV}$	
	eµ/µe	$50 \text{ GeV} < m_{\ell\ell} < 80 \text{ GeV}$	
		no b jet with $p_{\rm T} > 20 {\rm GeV}$	
DY CR			$ \Delta n_{\rm H} < 5$
	ee	$ m_{\ell\ell} - m_{\tau} < 15 \text{GeV}$	$ \Delta \eta_{ii} > 5$
		$p_{\rm T}^{\rm miss} > 60 {\rm GeV}$	· •0.
		no b jet with $p_T > 20 \text{ GeV}$	$ \Delta n_{\rm H} < 5$
	μμ		An 1 5

Tabl

kiner

Uncertainty source	Value
QCD-induced W ⁺ W ⁻ normalization	5.3%
$\mathrm{t}\overline{\mathrm{t}}$ scale variation	5.1%
VBS signal scale variation	5.0%
$\mathrm{t}\bar{\mathrm{t}}$ normalization	4.9%
b tagging	3.5%
Trigger corrections	3.3%
DY normalization	2.9%
Jet energy scale + resolution	2.6%
Unclustered $p_{\mathrm{T}}^{\mathrm{miss}}$	2.4%
QCD-induced W ⁺ W ⁻ scale variation	2.1%
Integrated luminosity	2.0%
Muon efficiency	2.0%
Pileup	1.8%
Electron efficiency	1.5%
Underlying event	1.3%
Parton shower	1.0%
Other	<1%
Total systematic uncertainty	13.1%
Total statistical uncertainty	14.9%

- Two OS leptons (electrons or muons), with dilepton mass $m_{\ell\ell} > 50~{
 m GeV}$ and transverse momentum $p_{ extsf{T}}^{\ell\ell} > 30 ext{ GeV}$, are selected with the tight selections described in Refs. [50], [51]. The thresholds for the highest and second-highest $p_{\rm T}$ leptons are 25 and 13 GeV, respectively. Events with an additional lepton with $p_{\rm T} > 10 \, {\rm GeV}$ are rejected;
- $p_{
 m T}^{
 m miss}>$ GeV; • 20

• At least two jets with $p_{\rm T} > 30~{\rm GeV}$, $m_{
m jj} > 300~{\rm GeV}$, and $|\Delta\eta_{
m jj}| > 2.5$.

Process	SR e $\mu Z_{\ell\ell}$ < 1	SR eμ Z _{{{} } > 1	SR ee - $\mu\mu Z_{\ell\ell}$ < 1	SR ee - $\mu\mu Z_{\ell\ell} > 1$
DATA	2441	2192	1606	1667
Signal + background	2396.8±98.5	2239.6 ± 106.0	1590.4 ± 49.4	1660.5 ± 43.6
Signal	169.1 ± 20.2	69.9 ± 8.4	98.0±6.5	38.3 ± 2.5
Background	2227.7 ± 96.4	2169.7 ± 105.6	1492.4 ± 48.9	1622.1 ± 43.5

W⁺W⁻ jj in two leptons, OS

Category	Requirements
Leptons	$p_{\rm T} > 27 {\rm GeV}$ $ \eta < 2.47 {\rm excluding} 1.37 < \eta < 1.52 {\rm (electrons)}$ $ \eta < 2.5 {\rm (muons)}$
	Identification: TightLH (electrons), Tight (muons) Isolation: Gradient (electrons), Tight_FixedRad (muons)
	$ d_0/\sigma_{d_0} < 5$ (electrons), $ d_0/\sigma_{d_0} < 3$ (muons) $ z_0 \sin \theta < 0.5$ mm
<i>b</i> -jets	$p_{\rm T} > 20 {\rm GeV}$ and $ \eta < 2.5$ (DL1r <i>b</i> -tagging with 85% efficiency)
Jets	$p_{\rm T}$ > 25 GeV and $ \eta $ < 4.5
Events	One electron and one muon with opposite electric charges No additional lepton with $p_{\rm T} > 10$ GeV, Loose isolation, TightLH/MediumLH (electrons) and Loose (muons) identification $\zeta > 0.5$ $m_{e\mu} > 80$ GeV $E_{\rm T}^{\rm miss} > 15$ GeV Two or three jets No <i>b</i> -jet

Sources	$\frac{\sqrt{(\Delta\mu)^2 - (\Delta\mu')^2}}{\mu} (\%$
Monte Carlo statistical uncertainty	7.7
Top quark theoretical uncertainties	6.3
Signal theoretical uncertainties	5.8
Jet experimental uncertainties	4.9
Strong W ⁺ W ⁻ <i>jj</i> theoretical uncertainties	1.3
Luminosity	0.8
Mis-identified lepton uncertainty	0.5
<i>b</i> -tagging	0.4
Lepton experimental uncertainties	0.1
Others	0.3
Data statistical uncertainty	12.3
Top quark normalisation uncertainty	4.9
Strong W^+W^-jj normalisation uncertainty	2.2
Total uncertainty	18.5

	Event yields		
Process	$n_{\rm jets} = 2$	$n_{\rm jets} = 3$	
EWK W ⁺ W ⁻ jj	158 ± 27	54 ± 13	
Top quark	2885 ± 214	1851 ± 131	
Strong W ⁺ W ⁻ jj	1214 ± 256	514 ± 121	
W+jets	37 ± 97	19 ± 48	
Z + jets	216 ± 62	65 ± 25	
Multiboson	101 ± 5	42 ± 3	
SM prediction	4610 ± 77	2546 ± 48	
Data	4610	2533	

WW jj in two leptons, SS with one tau

Table 1: Definition of the SR and four CRs. All regions are disjoint. The SR and three CRs (Nonprompt, $t\bar{t}$, OS) are selected from an inclusive lepton trigger; the QCD enriched CR (last row) is selected from a jet-based trigger.

Pagion	1 ℓ , 1 $\tau_{\rm h}$, no additional "loose" ℓ			
Region	same-sign (ℓ, τ_h)	$p_{\rm T}^{\rm miss}>50{ m GeV}$	additional requirements	
SR	✓	×	$M_{jj} > 500 \text{GeV}$	
Nonprompt CR	\checkmark	x	~	
t ī CR	×	\checkmark	b-tagged jet ("medium")	
OS CR	×	\checkmark	b-tagged jet veto ("loose")	
QCD-enriched CR	1 "loose" <i>e</i> , μ, or τ	_h , no add. lepton	s, $p_{\rm T}^{\rm miss} \leq 50 \text{GeV}$, $M_T(\ell, p_{\rm T}^{\rm miss}) < 50 \text{GeV}$	

Figure 2: Distributions in the invariant mass of the di-jet system for the data and the pre-fit background prediction for the (left) $e + \tau_h$ and (right) $\mu + \tau_h$ nonprompt CRs. The overflow count is included in the last bin. The solid red line shows the expectation for the EW ssWW signal.

Table 2: The impact of each systematic uncertainty on the signal strength μ as extracted from the fit to measure the SM ssWW VBS signal with the DNN output distributions. Upper and lower uncertainties are given for the various sources.

Uncertainty source	$+\Delta\mu$	$-\Delta \mu$
Theory (PDF, QCD-scale, ISR, and FSR)	+0.157	-0.099
Non-prompt estimation	+0.136	-0.125
tt normalization	+0.051	-0.023
Prefiring	+0.105	-0.059
Luminosity	+0.079	-0.092
b-tagging and mistagging	+0.007	-0.004
Jet energy scale and resolution, Pile-up jet ID	+0.079	-0.097
Pileup	+0.152	-0.162
LO-to-NLO VBS corrections	+0.043	-0.025
Unclustered energy	+0.003	-0.010
Hadronic tau energy scale and DEEPTAU	+0.154	-0.152
Charge misidentification	+0.005	-0.010
Lepton reconstruction, identification, and isolation	+0.005	-0.024
MC statistical	+0.324	-0.322
Total systematic uncertainty	+0.344	-0.302
Data statistical uncertainty	+0.522	-0.477
Total uncertainty	+0.625	-0.564

WW jj in two leptons, SS

The signal region (SR) event selection is summarised	in Table 2. The expected purity of the EW (QCD,
Int) $W^{\pm}W^{\pm}jj$ process in the SR is 52% (5.4%, 1.7%).	

Table 2: Signal region event selection.

Exactly two signal leptons with $p_{\rm T} > 27$ GeV and the same electric charge with $ \eta < 2.5$ for muons and with $ \eta < 2.47$ excluding $1.37 \le \eta \le 1.52$ for electrons with $ \eta < 1.37$ in the <i>ee</i> channel
$m_{\ell\ell'} \ge 20 \text{ GeV}$ 3rd lepton veto $ m_{ee} - m_Z > 15 \text{ GeV in the } ee\text{-channel}$
$E_{\rm T}^{\rm miss} \ge 30 { m GeV}$
At least two jets Leading and subleading jets satisfying $p_T > 65$ GeV and $p_T > 35$ GeV, respectively

b-jet veto for jets with $p_{\rm T} > 20$ GeV and $|\eta| < 2.5$ $m_{\rm ii} \ge 500 \, {\rm GeV}$ $|\Delta y_{jj}| > 2$

$$m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left|\vec{p}_{\mathrm{T}}^{\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}},$$

Source	Impact [%]
Experimental	
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.8
$E_{\rm T}^{\rm miss}$ scale and resolution	0.2
b-tagging inefficiency	0.7
Background, misid. leptons	3.1
Background, charge misrec.	0.8
Pileup modelling	0.2
Luminosity	1.9
Modelling	
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.8
EW $W^{\pm}W^{\pm}jj$, QCD corrections	3.5
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.8
Int $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.1
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.3
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.9
Background, WZ scale, PDF & α_s	0.2
Background, WZ reweighting	1.7
Background, other	1.0
Model statistical	1.8
Experimental and modelling	6.7
Data statistical	7.4
Total	10.0

Wγjj

FIG. 3. 2D distributions used in the fit for the total EW $W\gamma$ cross section measurement. The hatched bands represent the combined statistical and systematic uncertainties in the predicted yields. The vertical bars on the data points represent the statistical uncertainties of data. The expectation is shown after the fit to the data. EW $W\gamma$ inside (outside) fiducial region stands for the events of EW $W\gamma$ falling inside (outside) the fiducial region defined in Sec. IX.

$$\sigma_{\rm EW}^{\rm fid} = 23.5 \pm 2.8(\text{stat})^{+1.9}_{-1.7}(\text{theo})^{+3.5}_{-3.4}(\text{syst})\text{fb} = 23.5^{+4.9}_{-4.7}\text{ fb}$$

TABLE II. Exclusion limits at the 95% CL for each aQGC coefficient, derived from the $m_{W\gamma}$ distribution, assuming all other coefficients are set to zero. Unitarity bounds corresponding to each operator are also listed. All coupling parameter limits are in TeV⁻⁴, while U_{bound} values are in TeV.

Expected limit	Observed limit	$U_{\rm bound}$
$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0}/\Lambda^4 < 5.5$	1.7
$-7.1 < f_{M,1}/\Lambda^4 < 7.4$	$-7.8 < f_{M,1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M,3}/\Lambda^4 < 2.5$	$-2.7 < f_{M,3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M,4}/\Lambda^4 < 3.3$	$-3.7 < f_{M,4}/\Lambda^4 < 3.6$	2.3
$-3.4 < f_{M,5}/\Lambda^4 < 3.6$	$-3.9 < f_{M,5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M,7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T,0}/\Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T,1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{T,5}/\Lambda^4 < 0.31$	$-0.31 < f_{T,5}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T,6}/\Lambda^4 < 0.25$	$-0.25 < f_{T,6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T,7} / \Lambda^4 < 0.68$	$-0.67 < f_{T,7} / \Lambda^4 < 0.73$	3.1

Ζ*γjj* and ZZjj

	S
A EXPERIMEN	NT

Figure 3: Systematic uncertainties in the differential cross section for $4\ell jj$ production in the VBS-enhanced region as a function of $m_{4\ell}$ (left) and m_{jj} (right).

Lepton	$p_{\rm T}^{\ell} > 20, 30 (\text{leading}) \text{ GeV}, \eta_{\ell} < 2.5$ $N_{\ell} \ge 2$	
Photon	$\begin{split} E_{\mathrm{T}}^{\gamma} &> 25 \; \mathrm{GeV}, \eta_{\gamma} < 2.37 \\ E_{\mathrm{T}}^{\mathrm{cone20}} &< 0.07 E_{\mathrm{T}}^{\gamma} \\ \Delta R(\ell, \gamma) > 0.4 \end{split}$	
Jet	$\begin{aligned} p_{\rm T}^{j} &> 50 \; {\rm GeV}, \; y_{j} < 4.4 \\ & \Delta y > 1.0 \\ m_{jj} &> 150 \; {\rm GeV} \; {\rm or} \; m_{jj} > 500 \; {\rm GeV} \\ {\rm Remove \; jets \; if \; } \Delta R(\gamma, j) < 0.4 \; {\rm or \; if \; } \Delta R(\ell, j) < 0.3 \end{aligned}$	
Event	$m_{\ell\ell} > 40 \text{ GeV}$ $m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$ $\zeta(Z\gamma) < 0.4$ $N_{\text{jets}}^{\text{gap}} = 0$	
_{EW} =	$\pm 1.02 \pm 0.09 \text{ (stat)} \pm 0.09 \text{ (}$	sys

Table 3: The breakdown of the systematic uncertainties in the EW-Z $\gamma j j$ and Z $\gamma j j$ cross-sections. The	EW
modelling component includes interference, parton shower, underlying event, PDF and QCD scale uncertainti	es in
the EW-Zyjj process. The QCD modelling component includes merging scale, resummation scale, PDF and 0	QCD
scale uncertainties in the QCD - $Z\gamma jj$ process.	

	Data stat.	MC stat.	Background	Reco	EW mod.	QCD mod.	Total
$\frac{\Delta \sigma_{EW} / \sigma_{EW} [\%]}{\Delta \sigma_{Z\gamma} / \sigma_{Z\gamma} [\%]}$	±9 ±3	±1 ±1	±1 ±2	± 4 +4 -3	+8 -6 +7 -6	±2 ±9	±13 +12 -11

From talk at EPS 2023 M. Presilla

CMS

Recent	resu	lts

6	\geq		
	PROCESS	RESULTS	REFERENCE
	polarized ssWW	W_LW_L measurement	<u>PLB 812</u> (2020) 136018
	ZZ (4ljj)	4.0 σ + dim-8 EFT limits	<u>PLB 812</u> (2021) 135992
	osWW (2l2vjj)	Observation + XS	PLB 841 (2023) 137495
	ssWW to Th	2.7 σ	CMS-PAS- SMP-22-008
	Wy	Observation, differential XS + dim-8 EFT	PLB 811 (2020) 135988 + arXiv:2212.12592
	VBS Zy	Observation	PRD.104.0720 01
	VV semi- leptonic	WVjj evidence with full Run2 data	PLB 834 (2022) 137438
	Wpp (4jpp)	Dim-6/8 QGCs (100/fb CMS+TOTEM)	<u>JHEP 07</u> (2023) 229

				AS
PROCESS	RESULTS	REF	ERENCE	
Ζγ (2νγjj)	Observation + dim-8 EFT	<u>JHE</u> 082	<u>9 06 (2023)</u>	
Ζγ (2lγjj)	Observation + XS + differential XS	<u>arXiv</u>	2305.19142	
ZZ (4ljj)	Diff. XS+ dim-8 EFT	ATLA CON	<u>.S-</u> F-2023-024	
osWW (2l2vjj)	Observation + XS	ATLA CON	<u>S-</u> F-2023-039	
ssWW + WZ	Combined EFT interpretation (36/fb)	ATL- PUB-	<u>PHYS-</u> -2023-002	
ssWW	Diff. XS + BSM +EFT interpretation		<u>s-</u> F-2023-023	
ZZ (4ljj, 2vjj)	Observation	<u>Natu</u> 19 (2	ire Phys. 023) 237	

