12 SEP 2023 Higgs Hunting 2023

BSM and rare H(125) decays in the ATLAS experiment

Introduction

Since the discovery in 2012, all experimental observation matches with the SM prediction

A portal to BSM physics:

- Composite Higgs, Additional BSM Higgs bosons
- "SM-like" Higgs boson coupling to $B_{BSM} \leftarrow this talk$

Present today:

- $H \rightarrow \omega \gamma / K^* \gamma$
- $H \to \mathcal{M}\gamma$
- $H \rightarrow \gamma \gamma + X$
- $H \to \gamma \gamma_d$
- $H \rightarrow invisible$
- $H \rightarrow LFV$

(arXiv:2301.09938) (ATL-PHYS-PUB-2023-004) (arXiv:2301.10486) (JHEP07(2023)133) (arXiv:2301.10731) (JHEP07(2023)166)

arXiv:2301.09938

Measurement of Higgs boson coupling to the first and the second generation of fermions

>To probe the:

- Flavour-conserving coupling to u and d quarks (H $\rightarrow \omega\gamma$)
- Flavour-violating coupling to d and s quarks (H \rightarrow K^{*} γ)
- SM prediction of such decays are driven by two contributions:
 - 'direct': scales with Yukawa coupling
 - 'indirect': $H \to \gamma \gamma \to \mathcal{M} \gamma$ (\mathcal{M} being a meson)
 - The two contributions are typically destructive interfering
 - The SM expected branching ratio is of order $< 10^{-6}$

Major background from mis-identified meson from ID tracks originated from a jet

Estimated by a non-parametric data-driven model (arXiv:2112.00650)

 $H \rightarrow \omega \gamma / K^* \gamma$

Channel	Mass range	Observed (Expected)	H signal
	[GeV]	background	$\mathcal{B}=10^{-4}$
$H \rightarrow \omega \gamma$	115-135	681 (724 ± 16)	33 ± 4
$H \to K^* \gamma$	120-130	$10474~(10550\pm 60)$	163 ± 15

Channel	95% CL upper limit	
	Expected	Observed
$H \rightarrow \omega \gamma \ [10^{-4}]$	$3.0^{+1.2}_{-0.8}$	1.5
$H \to K^* \gamma \; [10^{-5}]$	$12.2^{+4.9}_{-3.4}$	8.9

No significant excess of events above the SM background expectation is observed

ATL-PHYS-PUB-2023-004

$H \to \mathcal{M}\gamma$

 Summary of various decays of the Higgs
 boson to a meson and a photon

No significant excess of events is observed

Model-independent search of with $H \rightarrow \gamma \gamma$

>Search for BSM Higgs + X production, with $H \rightarrow \gamma \gamma$ final state

Relatively clean background, less systematic uncertainty

Consider SRs not covered by the Higgs coupling analysis (STXS) [arXiv:1610.07922]

- Heavy flavour / High jet activity: Multi-b jet (3 or 4), multijet (4, 6 or 8)
- High *E*_T^{miss}: >100, >200, >300 GeV
- Top: $\ell + b$, t_{lep} , t_{had}
- Lepton: $1\ell / 2\ell / 3\ell$ / multi-lepton, same sign dilepton
- Three photons
- Background modelling
 - Resonant background: modelled using a double-sided crystal function
 - **Continuum background**: fit with data into analytic functions using the spurious signal test [arXiv:1802.04146], **except** for the
 - Multi-lepton regions: extrapolated from CRs

Model-independent search of with $H \rightarrow \gamma \gamma$

No significant excess seen in any SR

>Multi-lepton region, which had data-driven estimate, has 0 observed data

<u>JHEP07(2023)133</u>

$H \rightarrow \gamma \gamma_d$

Search for Higgs boson decaying into a (SM) photon and a **dark photon** (γ_d) The search for Higgs invisible decays

- Exploit the ZH production mode
 - $Z \to \ell^+ \ell^-$
 - $H \to \gamma \gamma_d$

> Optimized for dark photon searches in the [0 – 40] GeV mass range

>Major Backgrounds:

• Fake E_T^{miss} :

≻"ABCD method"

➢ Validation Region (A')

• $e \rightarrow \gamma$ fakes:

> fake factors of e^+e^- and $e^\pm\gamma$ final states > apply to a probe electron CR

(to be discussed in slide 10 - 11)

dark photon from the VBF

would share the same signature as

production mode (arXiv:2109.00925).

JHEP07(2023)133

 $H \rightarrow \gamma \gamma_d$

>Discriminant variable: **BDT score** to enhance the analysis sensitivity

>No excess of events above the SM expectation is found

>Observed (expected) upper limit of BR(H $\rightarrow \gamma \gamma_d$) at 95% CL:

- massless γ_d : 2.28% (2.82%)
- massive γ_d : [2.19%, 2.52%] ([2.71%, 3.11%]) *mass range from 1 to 40 GeV

Higgs invisible decays

Search for **invisible (dark matter)** decay of Higgs boson

- > This paper presents a **statistical combination** from the following channels
 - VBF Topology (<u>arXiv:2202.07953</u>)
 - ZH Topology (<u>arXiv:2111.08372</u>)
 - ttH Topology (<u>arXiv:2211.05426</u>)
 - ggH + jet Topology (<u>arXiv:2102.10874</u>)
 - VBF + γ Topology (arXiv:2109.00925) (This also shares the same signature as $H \rightarrow \gamma \gamma_d$ signal)

Run 2 combination

- Most experimental systematic uncertainties are correlated across all channels
- Background prediction uncertainties are uncorrelated due to the different nature of the leading backgrounds

Run 1 + Run 2 combination

Most of the uncertainties are not correlated between Run 1 and Run 2, due to the different algorithm calibration using data

Higgs invisible decays

Analysis	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed 95% U.L.	Expected 95% U.L.
Jet + $E_{\rm T}^{\rm miss}$	$-0.09^{+0.19}_{-0.20}$	0.329	$0.383^{+0.157}_{-0.107}$
$VBF + E_T^{miss} + \gamma$	$0.04^{+0.17}_{-0.15}$	0.375	$0.346^{+0.151}_{-0.097}$
$t\bar{t} + E_{\mathrm{T}}^{\mathrm{miss}}$	0.08 ± 0.15	0.376	$0.295^{+0.125}_{-0.083}$
$Z(\rightarrow \ell\ell) + E_{\rm T}^{\rm miss}$	0.00 ± 0.09	0.185	$0.185^{+0.078}_{-0.052}$
$VBF + E_T^{miss}$	0.05 ± 0.05	0.145	$0.103^{+0.041}_{-0.028}$
Run 2 Comb.	0.04 ± 0.04	0.113	$0.080^{+0.031}_{-0.022}$
Run 1 Comb.	$-0.02^{+0.14}_{-0.13}$	0.252	$0.265^{+0.105}_{-0.074}$
Run 1+2 Comb.	0.04 ± 0.04	0.107	$0.077^{+0.030}_{-0.022}$
$\text{VBF}\left(\text{H}\rightarrow\gamma\gamma_{d}\right)$	-	0.018	$0.017\substack{+0.007 \\ -0.005}$

Leading systematic uncertainty comes from the modelling of the W / Z + jets prediction

Sub-dominant uncertainties are related to the statistical precision of the data sample

> The 90% CL Run 1 + Run 2 limit of $\mathcal{B}_{H \to inv} < 0.093$ is complemented to the WIMP direct detection experiments

JHEP07(2023)166

Higgs LFV decays

Search for Lepton Flavour Violating (LFV) decay of Higgs boson, with independent signals of

- $H \rightarrow e\tau$
- $H \rightarrow \mu \tau$
- **Two** *τ* **decay modes** are considered:
 - Leptonically decaying tau ($\tau_\ell \rightarrow \ell \nu \nu$)
 - Hadronically decaying tau ($\tau_{had} \rightarrow hadrons + \nu$)
- Two independent background estimation methods

Symmetry-Based Method

leplep channels

leplep channels

lephad channels

S

Main background estimated mainly via data-driven symmetry method

MC-Based Method

- ► Main background estimated with **MC templates** and normalisation from CRs
- Fake background data-driven

The search for $H \rightarrow e\mu$ signal is presented in a separated paper [arXiv:1909.10235]

No significant excess of signal is observed

 \succ The simultaneous measurement is found to be **compatible with the SM within 2.1** σ

 \succ The symmetry method favours a larger branching ratio for $H \rightarrow \mu \tau$ than $H \rightarrow e \tau$ signal, with a significance of 2.5σ

Combined

Summary

>Analysis in ATLAS covers many BSM, LFV and rare Higgs decays

- >Most results with full Run-2 data has been already published
- >No significant excess observed

>Run-3 is now ongoing, and we expect an improvement with more data incoming!

Backup

Final states of the experiment:

- $H \rightarrow \omega \gamma$: $\omega \rightarrow \pi^+ \pi^- \pi^0$
- $H \to K^* \gamma: K^* \to K^+ \pi^-$
- Major background from mis-identified meson from ID tracks originated from a jet
 - Estimated by a non-parametric data-driven model (arXiv:2112.00650)
 - Model the background in a background-dominated "Generation Region"
 - Apply a sampling scheme to extract the most important correlation among the kinematic variables of the estimated background

H to $\omega\gamma$ / $K^*\gamma$

Non-parametric data-driven model

- Define a background-dominated "Generation Region" (GR), by releasing the nominal isolation requirement
- Model kinematic distributions of these events, including correlations between important variables
- Draw from distributions (millions of times) with random numbers + combine together = pseudocandidates
- Correlations should then be retained in the pseudocandidates, as well as **behavior after selection**
- Resulting distribution is smoothed with Gaussian Kernel Density Estimation

Model-independent search of with H $\rightarrow \gamma \gamma$

Region Detector level Particle level Target $n_{b-\text{jet}} \ge 3, 85\% \text{ WP}$ $n_{b-\text{jet}} \ge 3$ $\geq 3b$ Heavy flavour $n_{b-\text{jet}} \ge 4,85\% \text{ WP}$ $\geq 4b$ $n_{b-\text{jet}} \ge 4$ ≥4j $n_{\rm iet} \ge 4, |\eta_{\rm jet}| < 2.5$ $n_{\rm iet} \ge 4, |\eta_{\rm jet}| < 2.5$ ≥6j $n_{\rm iet} \ge 6, |\eta_{\rm jet}| < 2.5$ $n_{\rm iet} \ge 6, |\eta_{\rm jet}| < 2.5$ High jet ≥8j $n_{\rm iet} \ge 8, |\eta_{\rm jet}| < 2.5$ $n_{\rm iet} \ge 8, |\eta_{\rm jet}| < 2.5$ activity $H_{\rm T} > 500 \,{\rm GeV}$ $H_{\rm T} > 500 \,{\rm GeV}$ $H_{\rm T} > 500 \,{\rm GeV}$ $H_{\rm T} > 1000 \, {\rm GeV}$ $H_{\rm T} > 1000 \, {\rm GeV}$ $H_{\rm T} > 1000 \, {\rm GeV}$ $H_{\rm T} > 1500 \, {\rm GeV}$ $H_{\rm T} > 1500 \,{\rm GeV}$ $H_{\rm T} > 1500 \,{\rm GeV}$ $E_{\rm T}^{\rm miss,tru} > 100 \,{\rm GeV}$ $E_{\rm T}^{\rm miss} > 100 \, {\rm GeV}$ $E_{\rm T}^{\rm miss}$ >100 GeV $E_{\rm T}^{\rm miss,tru} > 200 {
m GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}}$ $E_{\rm T}^{\rm miss}$ >200 GeV $E_{\rm T}^{\rm miss} > 200 \, {\rm GeV}$ $E_{\rm T}^{\rm miss,tru} > 300 \,{\rm GeV}$ $E_{\rm T}^{\rm miss}$ >300 GeV $E_{\rm T}^{\rm miss} > 300 \, {\rm GeV}$ $n_{\ell=e,\mu} \ge 1, n_{b-\text{jet}} \ge 1, 70\% \text{ WP}$ lb $n_{\ell=e,\mu} \ge 1, n_{b-\text{iet}} \ge 1$ Тор $n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1,$ $n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{h-\text{jet}} = 1$ t_{lep} 70% WP $n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{b\text{-jet}} = 1,$ $n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{h-\text{iet}} = 1$ t_{had} 70% WP, BDT_{top} > 0.9 $\geq 1\ell$ $n_{\ell=e,\mu} \geq 1$ $n_{\ell=e,\mu} \geq 1$ 2ℓ $ee, \mu\mu, \text{ or } e\mu$ $ee, \mu\mu, \text{ or } e\mu$ $ee, \mu\mu, e\mu; |m_{\ell\ell} - m_Z| > 10 \,\text{GeV}$ $ee, \mu\mu, e\mu; |m_{\ell\ell} - m_Z| > 10 \,\text{GeV}$ Lepton $2\ell - Z$ for same-flavour leptons for same-flavour leptons SS-2ℓ *ee*, $\mu\mu$, or $e\mu$ with same charge $ee, \mu\mu$, or $e\mu$ with same charge $\geq 3\ell$ $n_{\ell=e,\mu} \geq 3$ $n_{\ell=e,\mu} \geq 3$ $\geq 2\tau$ $n_{\tau,\text{had}} \geq 2$ $n_{\tau} \geq 2$ $n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_1, γ_2 $1\gamma - m_{\gamma\gamma}^{12}$ $n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_1, γ_2 Photon $1\gamma - m_{\gamma\gamma}^{23}$ $n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_2, γ_3 $n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_2, γ_3

18

Model-independent search of with H $\rightarrow \gamma \gamma$

Expected Background Observed SR **Observed Yield** Continuum Total Background Excess Significance $[\sigma]$ **Resonant Higgs** Heavy flavour 30 $\geq 3b$ 6.47 23.4 29.9 -0.3 $\geq 4b$ 1.22 0.69 1.91 -0.2High jet activity ≥4j 85.2 1330 1420 1404 -0.3 -1.3 ≥6j 16.4 104 121 105 2.44 6.37 8.81 -0.9 ≥8j 6 297 $H_{\rm T} > 500 \,{\rm GeV}$ 23.9 321 310 -0.6 $H_{\rm T} > 1000 \, {\rm GeV}$ 1.85 27 28.8 39 1.8 $H_{\rm T} > 1500 {\rm ~GeV}$ 0.264 3.9 4.17 4 0.1 $E_{\rm T}^{\rm miss}$ $E_{\rm T}^{\rm miss} > 100 \, {\rm GeV}$ 29 171 200 212 0.8 $E_{\rm T}^{\rm miss} > 200 {\rm GeV}$ 4.51 8.06 12.6 16 0.9 $E_{\rm T}^{\rm miss} > 300 \,{\rm GeV}$ 1.15 1.85 3 5 0.8 Top quark lЬ 14.9 34 -0.6 27 41.9 0.281 2.58 2.86 -0.7 tlep 4.44 96.3 101 111 1.7 thad Lepton $\geq 1\ell$ 38.8 183 222 237 1.4 2ℓ 4.24 9.42 13.7 10 -0.5 $2\ell - Z$ 1.95 7.35 9.3 10 0.7 SS-2ℓ 0.431 0.224 0.655 0.2 $\geq 3\ell$ 0.02 0.25 0.27 0 _ $\geq 2\tau$ 0.256 0.875 1.13 2 0.6 Photon $1\gamma - m_{\gamma\gamma}^{12}$ 2.33 132 0.7 119 121 $1\gamma - m_{\gamma\gamma}^{23}$ 0.436 32.8 33.2 42 1.1

JHEP07(2023)133

 $H \rightarrow \gamma \gamma_d$

>Search for Higgs boson decaying into a (SM) photon and a **dark photon** (γ_d)

Exploit the ZH production mode

• $Z \to \ell^+ \ell^-$

- $H \to \gamma \gamma_d$
- >The final state consist of
 - Two same-flavour, opposite-charge electrons or muons,
 - An isolated photon, and
 - Missing transverse momentum
- Optimized for dark photon searches in the [0 40] GeV mass range

Major Backgrounds:

- Fake E_T^{miss} :
 - "ABCD method"
 - Validation Region (A')
- $e \rightarrow \gamma$ fakes:
 - > fake factors of e^+e^- and $e^\pm\gamma$ final states
 - > apply to a probe electron CR

The search for **Higgs invisible decays**

(to be discussed in slide 10 - 11)

dark photon from the VBF

would share the same signature as

production mode (arXiv:2109.00925).

$H \rightarrow \gamma \gamma_d$

> Discriminant variable: **BDT score** to enhance the analysis sensitivity

>Input variables:
$$\sigma_{E_T^{miss}}, m_T(p_T^{\gamma}, E_T^{miss}), m_{\ell\ell}, m_{\ell\ell\gamma}, p_T^{\gamma}, \frac{|E_T^{miss} + p_T^{\gamma}| - p_T^{\ell\ell}}{p_T^{\ell\ell}}$$

Binning optimized to obtain the best expected sensitivity, while keeping low statistical uncertainties in each bin

Results consistent among different dark photon mass

No excess of events above the SM expectation is found

>Observed (expected) upper limit of BR(H $\rightarrow \gamma \gamma_d$) at 95% CL:

- massless γ_d : 2.28% (2.82%)
- massive γ_d : [2.19%, 2.52%] ([2.71%, 3.11%]) *mass range from 1 to 40 GeV

Higgs LFV decays

>Choice of analysis methods when combining the channels and categories

JHEP07(2023)166