

УНИВЕРЗИТЕТ У БЕОГРАДУ | НСТИТУТ ЗА ФИЗИКУ 🛛 БЕОГРАД нститут од национално

HIGGS SELF COUPLINGS

Lídíja Žívkovíć on behalf of the ATLAS collaboration Institute of Physics Belgrade

 ∞

универзитет у београду ИНСТИТУТ ЗА ФИЗИКУ

MOTIVATION

Investigating the HH production allows for direct measurement of the Higgs self-coupling Probe the shape of the Higgs potential

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{B} \mathcal{V} + h.c. \end{aligned}$ + X: Yij Xs\$ the $+ \left| \mathcal{D}_{\mathcal{B}} \right|^{2} - V(\phi)$

иниверзитет у београду ИНСТИТУТ ЗА ФИЗИКУ

HH DECAY MODE AND SEARCHES

- Tue to large $\mathscr{B}(H \to bb)$ at least one bb decay is required in most cases
 - Excellent b-jet identification might be crucial for observation
- $\ensuremath{^{\diamond}}$ Cross sections, branching ratios and kinematics depend on κ_{λ}
 - Optimisation of analyses strategies are important

	bb	ww	ττ	ZZ	Ŷ
bb	34%				
ww	25%	4.6%			
π	7.3%	2.7%	0.39%		
zz	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.00

$HH \rightarrow bbbbb$

Phys. Rev. D 108 (2023) 052003

НИВЕРЗИТЕТ У БЕОГРАДУ

Highest BR, but also large background

4 central jets fulfilling b-jet tagging (DL1r)
 b-jets used in trigger as well (MV2c10)
 To separate VBF production - 2 forward jets
 Background estimation - 90% of the background events come from multijet processes

- Fully data-driven technique based on sample with exactly 2 b-jets
- Reweight 2 b-jet data to
 - 4 b-jet in CR1 using an NN
 - CR2 used for systematics on the method

Phys. Rev. D 108 (2023) 052003

$^{\text{O}}$ Likelihood scans on the κ_{λ} and κ_{2V} parameters

$HH \rightarrow bbbb$

УНИВЕРЗИТЕТ У БЕОГРАДУ ИНСТИТУТ ЗА ФИЗИКУ БЕОГРАД ИНСТИТУТ ОД НАЦИОНАЛНОГ ЗНАЧАЈА ЗА РЕПУБЛИКУ СРБИЈУ

$HH \rightarrow bb\tau\tau$

- \clubsuit Either 2 hadronic τ -jets with opposite charge
- \clubsuit Single- and Di τ -Triggers (Combined) <u>one signal category</u>
- \circ Or 1 hadronic τ -jet and 1 lepton with opposite charge
- * Single lepton trigger and $l+\tau$ -Trigger two signal categories
- Dominant backgrounds
 - ${}^{\textcircled{\sc op}}$ Real $\tau\text{-jets}$ from ttbar and $Z\to\tau\tau$ + heavy flavor jets

 \clubsuit Fake τ -jets from multijet and ttbar production

Signal extraction by combining 3 MVA outputs in bins of log₁₀(S/B)
The observed (expected) upper limit on the non-resonant diHiggs production @95% CL, is 4.7 (3.9) times the SM
Observed (Expected): κ_λ ∈ [-2.4,9.2]([-2.,9.])

and set limits

罪

14

универзитет у београду ИНСТИТУТ ЗА ФИЗИКУ БЕОГРАД ИНСТИТУТ ОД НАЦИОНАЛНОГ ЗНАЧАЈА ЗА РЕПУБЛИКУ СРБИЈУ

SUMMARY

 Many improvements in experimental devices and techniques lead us to fantastic results
 With run 3 we will double the data
 We go further: Projections for HL-LHC:
 ATLAS - 3.4σ significance; 5σ possible combining with CMS

Public results

универзитет у београду ИНСТИТУТ ЗА ФИЗИКУ

 $^{\circ}$ In early 2000's $VH \rightarrow Vbb$ was impossible to think of at that time future LHC DiHiggs analyses were wild dreams

People like Meenakshi made it possible

TO MEENAKSHI

BACKUP

H

НИВЕРЗИТЕТ У БЕОГРАДУ

- In 2012 a new particle with properties consistent with those predicted for the Higgs boson of the standard model was discovered
- Precision era in Higgs physics points to SM-like particle
 - The coupling between the Higgs boson and a given particle is fully defined by the particle's mass and type.
- Missing Higgs self coupling, explanation of EWK symmetry breaking

n

MOTIVATION

KX

18

 c_{HX}^{exp}

 c_{HX}^{SM}

EPJC 83 (2023) 519

иниверзитет у београду ИНСТИТУТ ЗА ФИЗИКУ | БЕОГРАД

- * Unlikely VBF it can probe separately WWHH (κ_{2W}) and ZZHH (κ_{27}) interactions
- $^{\circ}$ HH \rightarrow bbbb and leptonic decays of V: $Z \rightarrow \nu \nu$ (OL), $W \rightarrow l \nu$ (1L) and $Z \rightarrow ll$ (2L)
- Extract signal with simultaneous fit to BDT distributions Results interreted in three different scenarios:
 - * "SM" SM kinematics but with its cross-section scaled by a signalstrength parameter μ
 - κ_{λ} tests for an anomalous tri-linear hhh coupling, assuming SM couplings for the rest
 - k_{2V} tests for an anomalous quartic hhVV coupling $-34.4 < \kappa_{\lambda} < 33.3 \qquad -12.3 < \kappa_{2W} < 13.5$
 - $-8.6 < \kappa_{2V} < 10.0$

 $-9.9 < \kappa_{27} < 11.3$

Wilson Coefficient	Operator
c_H	$(H^{\dagger}H)^3$
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
c_{tH}	$(H^{\dagger}H)(ar{Q} ilde{H}t)$
c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu u}_{A}$
c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^{A}t)\tilde{H}G^{A}_{\mu\nu}$

EFFECTIVE FIELD THEORES

Seffective Field Theories (EFT) - indirect probe of new physics

			and the second state of the second state of the		
институт за физику Београд институт за физику Београд институт од националног значаја за републику србију	TU]	RN	HE	RIN	FUTU
 Four systematic accounts for ex Image: Second state accounts for example accounts for ex	c unce kpecte	ertainty ed impr	v scen oveme	arios probe	ed – baseline
	Significance [σ]				Combined signal
Uncertainty scenario	$bar{b}\gamma\gamma$	$bar{b} au^+ au^-$	$b\bar{b}b\bar{b}$	Combination	strength precision [%]
No syst. unc.	2.3	4.0	1.8	4.9	-21/+22
Baseline	2.2	2.8	0.99	3.4	-30/+33
Theoretical unc. halved	1.1	1.7	0.65	2.1	-47/+48
Run 2 syst. unc.	1.1	1.5	0.65	1.9	-53/+65

RE - HL-LHC

22

универзитет у београду ИНСТИТУТ ЗА ФИЗИКУ | БЕОГРАД институт од националног

Run2 vs run 3 taggers

IMPROVEMENTS

