

Higgs Hunting Higgs boson anomalous couplings and EFT interpretation at CMS

Angela Taliercio on behalf of CMS collaboration

12 Sept 2023

Higgs physics: overview

Wide range of final state studied:

- $H \rightarrow WW^*$, ZZ^* vector boson
- H to the third generation fermions
- H to the second generation fermions (first evidence!!!)

Access to new measurement:

• Higgs self coupling in HH events

Searches for CP violation in the Higgs sector

Higgs decay branching fraction

H → bb	57.7%
H → WW	21.5%
$\mathbf{H} \rightarrow \tau \tau$	6.3%
H → cc	2.9%
H → ZZ	2.6%
$H \rightarrow \gamma \gamma$	0.23%
H → µµ	0.02%

Higgs physics: overview

Higgs physics: overview

- In BSM theories, H boson interactions may generate several of them, both CP even and CP odd
- It may also appear through loop corrections in SM processes, but the size of their contributions is beyond the current experimental sensitivity
- How do we even measure CP even/odd operators??

Let's start with some maths

Anomalous coupling: Hff coupling

Anomalous effects in the H boson couplings to fermions can be parametrized using the following scattering amplitude

$$A(Hff) = -\frac{m_{\rm f}}{v} \bar{\psi}_{\rm f} (\kappa_{\rm f} + {\rm i}\tilde{\kappa}_{\rm f}\gamma_5) \psi_{\rm f}$$

In the SM $k_{\rm f}$ = 1 and $\tilde{k}_{\rm f}$ = 0

- Ψ_f is the Dirac spinor
- κ_f is the coupling strength
- m is the mass of the spinor
- v is the Higgs vacuum expectation value

The presence of both CP even and CP odd couplings will lead to CP violation

CP-even terms:

$$f_{CP}^{Hff} = \frac{|\tilde{\kappa}_f|^2}{|\kappa_f|^2 + |\tilde{\kappa}_f|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_f}{\kappa_f}\right)$$

• ttH very sensitive to $k_{\!f}, \tilde{k}_{\!f}$

CP-odd terms:

$$|f_{CP}^{Hff}| = \left(1 + 2.38 \left[\frac{1}{|f_{a_3}^{ggH}|}\right]\right)^{-1} = \sin^2 \alpha^{Hff}$$

- Depending on the value of a we can have three possible CP scenarios
 - Purely Cp-even: a = 0 or a = 180
 - Purely Cp-odd: $\alpha = 90$
 - Mixed: a ≠ 0, ≠ 90, ≠180

Anomalous coupling: HVV coupling

Anomalous effects in the H boson production (VBF, ZH, and WH), ggH production, $H \rightarrow VV$ decay, and partially in the tH and gg \rightarrow ZH production, are described by the HV₁V₂ couplings

$$A(HV_{1}V_{2}) = \frac{1}{v} \left[a_{1}^{VV} + \frac{\kappa_{1}^{VV} q_{V1}^{2} + \kappa_{2}^{VV} q_{V2}^{2}}{(\Lambda_{1}^{VV})^{2}} + \frac{\kappa_{3}^{VV} (q_{V1} + q_{V2})^{2}}{(\Lambda_{Q}^{VV})^{2}} \right] m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + \frac{1}{v} a_{2}^{VV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

Under the SM assumption, the non-zero terms of that expression are only a1^{WW} and a1^{ZZ}, the rest
of ZZ and WW coupling are considered anomalous contribution

$$f_{a_i} = \frac{\mid a_i \mid^2 \sigma_i}{\sum_{j=1,2,3...} \mid a_j \mid^2 \sigma_j} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$$

• For the gg couplings, the only nonzero couplings are a_2 and a_3 , which are anomalous contributions due to BSM physics and do not account for interactions mediated by SM particles via loops

$$f_{a_3} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sign}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$$

Anomalous coupling: HVV coupling

Anomalous effects in the H boson production (VBF, ZH, and WH), ggH production, $H \rightarrow VV$ decay, and partially in the tH and gg \rightarrow ZH production, are described by the HV₁V₂ couplings

$$A(HV_{1}V_{2}) = \frac{1}{v} \left[a_{1}^{VV} + \frac{\kappa_{1}^{VV} q_{V1}^{2} + \kappa_{2}^{VV} q_{V2}^{2}}{(\Lambda_{1}^{VV})^{2}} + \frac{\kappa_{3}^{VV} (q_{V1} + q_{V2})^{2}}{(\Lambda_{Q}^{VV})^{2}} \right] m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + \frac{1}{v} a_{2}^{VV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu$$

The a^{vv} couplings are CP-odd, and their presence together with any other CP-even couplings would result in CP violation in a given process

All the parameters in the equation can be access from data

Anomalous coupling: EFT interpretation

The sensitivity to anomalous couplings can be translated into sensitivity to higher dimensionality operators in EFT

$$L = L_{SM} + \sum_{i} \frac{C_{i}^{(6)}O_{i}^{(6)}}{\Lambda^{2}} + (O(\Lambda^{-4}))$$

Among the anomalous contributions, considerations of symmetry and gauge invariance require $a^{Zv} = a^{yv} = 0$, $\kappa^{ZZ} = \kappa^{ZZ}$, $\kappa^{yv} = \kappa^{yv} = 0$, $\kappa^{gg} = 0$, and $\kappa^{Zv} = 0$ we are left with:

- 4 HVV independent couplings (a_1 , a_2 , a_3 , k_1/Λ_1):
 - $$\begin{split} \delta c_{z} &= \frac{1}{2}a_{1} 1, \\ c_{z\Box} &= \frac{m_{Z}^{2}s_{w}^{2}}{4\pi\alpha} \frac{\kappa_{1}}{(\Lambda_{1})^{2}}, \\ c_{zz} &= -\frac{s_{w}^{2}c_{w}^{2}}{2\pi\alpha}a_{2}, \\ \tilde{c}_{zz} &= -\frac{s_{w}^{2}c_{w}^{2}}{2\pi\alpha}a_{3}. \end{split}$$

• 2 Hgg couplings (a₂⁹⁹, a₃⁹⁹):

$$\begin{split} c_{\rm gg} &= -\frac{1}{2\pi\alpha_{\rm S}}a_2^{\rm gg},\\ \tilde{c}_{\rm gg} &= -\frac{1}{2\pi\alpha_{\rm S}}a_3^{\rm gg}, \end{split}$$

How do we measure CP operators

Kinematic distributions of particles are sensitive to the quantum numbers and anomalous couplings of the H boson, we can tag them with:

• Matrix element methods (MEM): build Neymann-Pearson-like discriminants based on a complete set of mass and angular input observables

• Machine learning techniques: build NN classifiers to exploit correlations and boost the sensitivity

ttH/tH final state: Hff results

• H boson decays via H \rightarrow WW or H \rightarrow TT, final states characterized by the presence of at least two leptons are studied.

Machine learning techniques are applied to these final states to enhance the separation of CP-even from CP-odd scenarios

HVV coupling constraints in HZZ

H boson coupling studied: ggH, VBF, VH, ttH, tH, bbH

• MELA discriminator used to define the different categories

HVV coupling constraints in HZZ

 HZZ off shell analysis can be used to target a measurement of f_{a3} (= 10⁻⁵ theory target) and check how the Higgs width is further constrained, results are summarized in the plot

HVV coupling constraints in HWW

Final state: $H \rightarrow WW \rightarrow \mu vev$

MELA discriminator used to define the different categories

- H boson coupling studied: ggH, VBF, VH
 - MELA discriminator used to define the different categories
 - reconstruction of boosted VH events

Main backgrounds: tt, DY, non-resonant WW and Wjets (estimated from data)

• included also ttH, $H \rightarrow \gamma \gamma$

NEW!!!!

HVV coupling constraints in HZZ

It is possible to reinterpret Hff in the context of effective field theory

Assuming SU(2)×U(1) symmetry, we are left with 4 coefficients in the Hff Lagrangian

$$c_{gg} = \frac{1}{2\pi\alpha_S} a_2^{gg}, \, \tilde{c}_{gg} = \frac{1}{2\pi\alpha_S} a_3^{gg}, \, k_t, \, \tilde{k}_t$$

HVV coupling constraints in HZZ

Main background: tt+jets et Hff in the context of EFT theory

Events are divided into categories depending on the b jet multiplicity: Hff Lagrangian

• In each category a dedicated NN is trained to separate signal vs bkg

The NN output is used in the final fit

New result from ttH, Hbb analysis!!

HVV limits in HTT

H boson coupling studied: ggH, VBF, VH, ttH, tH, bbH

search for CP violation anomalous couplings of the Higgs:

- interactions with fermions Hff
- interactions with vector bosons HVV

Final discrimination done thanks to MELA + ML: the former provide optimal separation of the dominant backgrounds, while the latter is used to disentangle different signal hypotheses

Combined $H \rightarrow 4I$, $H \rightarrow \tau\tau$ that leads to $f_{a3} = [-0.00001, 0.00088]$ @95% CL

CP structure of the Yukawa coupling HTT final state

We can write the lagrangian for the T Yukawa couplings in terms of CP-odd and CP-even components:

$$\mathcal{L}_{\mathrm{Y}} = -\frac{m_{\tau}}{v} \mathrm{H}(\kappa_{\tau} \overline{\tau} \tau + \widetilde{\kappa}_{\tau} \overline{\tau} i \gamma_{5} \tau)$$

The effective mixing angle a^{HTT} for the HTT coupling is defined in terms of the coupling strengths as:

$$\tan(\alpha^{\mathrm{H}\tau\tau}) = \frac{\widetilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

- Depending on the value of a we can have three possible CP scenarios
 - Purely Cp-even: a = 0 or a = 180
 - Purely Cp-odd: a = 90
 - Mixed: a ≠ 0, ≠ 90, ≠180

Pure CP odd coupling excluded by 3 SD

Higgs couplings combination: EFT results

SM Lagrangian can be extended by:

$$L_{HEL} = L_{SM} + \sum_{j} \frac{f_j O_j}{\Lambda^2} + (O(\Lambda^{-4}))$$

$$\sigma_i^{EFT} = \sigma_i^{SM} + \sigma_i^{int} + \sigma_i^{BSM}$$

Where:

- σ_i^{int} is the is the leading term in the EFT expansion and accounts for the interference with the SM amplitude
- σ_i^{BSM} is the SM independent term

Results are presented as a function of $c_j=f_j/\Lambda^2$ in STXS bins:

$$\mu_i(c_i) = \frac{\sigma_i^{EFT}}{\sigma_i^{SM}}$$

Conclusion

- Small CP-violating anomalous couplings in the SM or new BSM scenarios including CP-odd terms are not excluded yet:
 - CP-odd top-Higgs excluded at 3.7 SD
- The sensitivity to anomalous couplings can be translated into sensitivity to higher dimensionality operators in EFT
- re-interpretation of STXS measurements, allows to set direct constraints to EFT coefficients (HEL basis)
- So far, all the results are in agreement with the predictions of the SM

Stay tuned for new Run3 results!!!

Backup

Higgs couplings combination: EFT results

- A combination of the the analysis $H \rightarrow ZZ$, $H \rightarrow \gamma\gamma$, $H \rightarrow WW$, $H \rightarrow bb$, $H \rightarrow \tau\tau$, $H \rightarrow \mu\mu$ has been done
- Luminosity up to 137 fb-1
- All signal productions mechanisms that contribute less than 0.1% to the total signal expectation in each category are neglected during the fit

Analysis	Decay tags	Production tags	Luminosity (fb^{-1})	References
${ m H} ightarrow \gamma \gamma$	$\gamma\gamma$	ggH, $p_{\rm T}({\rm H}) \times {\rm N}$ -jet bins VBF, $p_{\rm T}({\rm H}~jj)$ bins	77.4	[53]
		ttH	35.9, 41.5	[54], [55]
$\mathrm{H} \to \mathrm{ZZ}^{(*)} \to 4\ell$	4µ, 2e2µ/2µ2e, 4e	ggH, $p_T(H) \times N$ -jet bins VBF, m_{jj} bins VH hadronic VH leptonic, $p_T(V)$ bins ttH	137	[56]
$\mathrm{H} ightarrow \mathrm{WW}^{(*)} ightarrow \ell \nu \ell \nu$	eμ/μe	$ggH \le 2$ -jets VBF		
	ee+μμ eμ+jj 3ℓ	$ggH \leq 1$ -jet VH hadronic WH leptonic	35.9	[57]
	4ℓ	ZH leptonic		
$H \rightarrow \tau \tau$		ggH, $p_{\rm T}({\rm H}) \times {\rm N}$ -jet bins VH hadronic	77.4	[58]
	$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	VBF VH, high- $p_{\rm T}({\rm V})$	35.9	[59]
$H \rightarrow bb$	$W(\ell\nu)H(bb)$ Z($\nu\nu$)H(bb), Z($\ell\ell$)H(bb)	WH leptonic ZH leptonic	35.9, 41.5	[60], [61]
	bb	ttH, t $\overline{t} \rightarrow 0$, 1, 2 ℓ + jets ggH, high- $p_{\rm T}({ m H})$ bins	77.4 35.9	[62] [63]
ttH production with H \rightarrow leptons	$\begin{array}{c} 2\ell \mathrm{ss}, 3\ell, 4\ell, \\ 1\ell {+} 2\tau_{\mathrm{h}}, 2\ell \mathrm{ss} {+} 1\tau_{\mathrm{h}}, 3\ell {+} 1\tau_{\mathrm{h}} \end{array}$	ttH	35.9, 41.5	[64], [65]
$H \rightarrow \mu \mu$	μμ	ggH VBF	35.9	[66]