New analysis methods

3 slides of comparison Thanks to Yanping Huang and Alessandro Calandri

Paolo Francavilla - University of Pisa - INFN Pisa Higgs Hunting 2023 11-13/9/2023

Dedicated object reconstruction

The reach of Higgs analysis is increasing with data, opening the possibility for new signature and new needs from the objects.

As example from ATLAS High mass $H \rightarrow Z\gamma$ search => collimated di-leptons

- Customized electron ID (MVA ID):
 - MVA (XGBoost) using shower shape variables and track-related variables with a signal efficiency of 99% @ 5TeV
- Mix-ID: combine standard loose ID and MVA ID with a logical OR which improve the efficiency by 6.2% -12.7%
- eγ pair selection: one of electrons is misreconstructed as a photon, and retrieve via tracking matching

Dedicated object reconstruction

The reach of Higgs analysis is increasing with data, opening the possibility for new signature and new needs from the objects.

As example from ATLAS High mass H->Z γ search => collimated di-leptons

- Customized electron ID (MVA ID):
 - MVA (XGBoost) using shower shape variables and track-related variables with a signal efficiency of 99% @ 5TeV
- Mix-ID: combine standard loose ID and MVA ID with a logical OR which improve the efficiency by 6.2% -12.7%
- ey pair selection: one of electrons is misreconstructed as a photon, and retrieve via tracking matching

Simulation modelling

Few examples:

- Generative and conditional Normalizing flow used to model detector response and relax the request for large MC statistics (Hγγ in ATLAS)
- Correction on simulation to EM shower shapes and isolation to improve data MC modelling

Modelling of the backgrounds

Large large irreducible backgrounds => MVA techniques define sensitive regions in very specific corner of the phase space.

BKG Modelling is crucial!

Important inputs:

- Improve the prefit modelling,
- reduce background modeling uncertainties and fit constraints: increased complexity of background model and improve prefit agreement with dedicated generators/tunings

STXS comparison ttH(bb)

