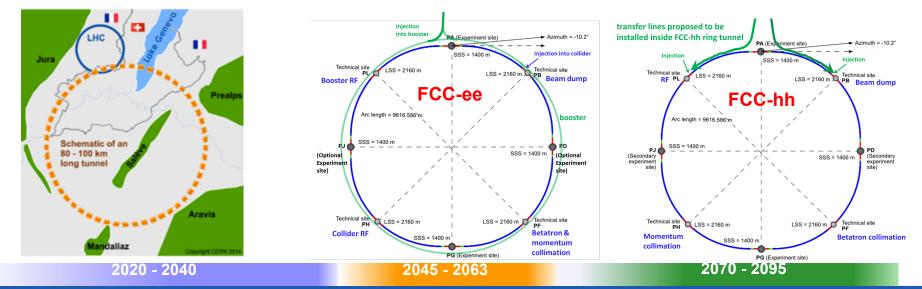
○ FCC

# Experimental prospects @Future Circular collider


PATRIZIA AZZI - INFN-PD Higgs Hunting 2023 Paris, 11-13 September 2023



# FCC integrated program

### comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H,  $t\bar{t}$ ) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option
- highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. model-independent measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as "energy upgrade" of FCC-ee)
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC





FUTURE

CIRCULAR COLLIDER



### Main changes

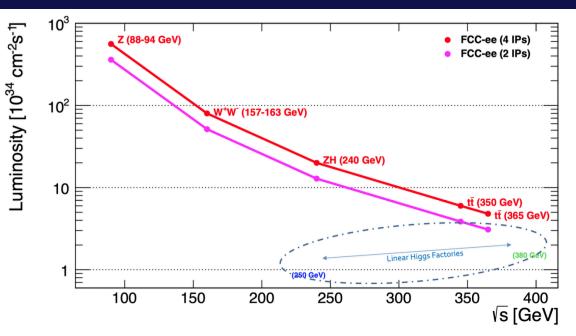
- # access points reduced from 12 to 8
- facilitating placement and reducing the overall surface area required
- circumference has shrunk from 97.75 km to 90.657 km
- new layout with 4-fold superperiodicity, enabling FCC-ee operation with either 2 or 4 collision points
- hadron collider RF system now shares a klystron gallery tunnel with lepton collider ٠
- new circumference matched to both LHC and the SPS tunnels, corresponding to 400 MHz harmonic ratios

of h<sub>ECC</sub>/

h<sub>LHC</sub>=1010/297 & h<sub>ECC</sub>/h<sub>SPS</sub>=1010/77, allowing for hadron beam injection from either the LHC or from a new

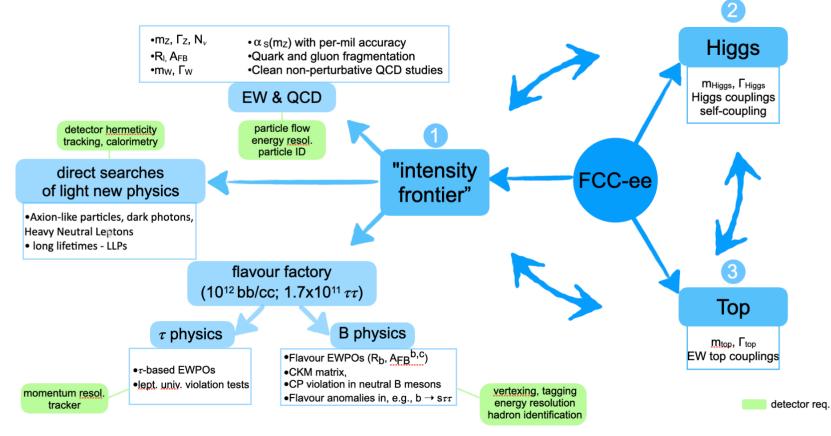
superconducting SPS, with bunch spacings of 2.5, 5.0, 7.5, 10, 12.5, 15, 20, and 25 m

| unit          | 2018 CDR [1]       | 2023 Optimised                                                                                                                                                  |
|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| km            | 97.75              | 90.657                                                                                                                                                          |
| $\mathbf{km}$ | 83.75              | 76.02                                                                                                                                                           |
| $\mathbf{km}$ | 13.33              | 12.24                                                                                                                                                           |
| $\mathbf{km}$ | 8.869(8), 3.2(4)   | 9.617(8)                                                                                                                                                        |
|               | 12                 | 8                                                                                                                                                               |
|               | 8                  | 8                                                                                                                                                               |
| $\mathbf{km}$ | 1.4~(6),~2.8~(2)   | 1.4 , 2 1 (4)                                                                                                                                                   |
|               | 2                  | 4                                                                                                                                                               |
|               |                    | Charterer Miel                                                                                                                                                  |
|               | km<br>km<br>km<br> | $\begin{array}{ccccccc} \mathrm{km} & 97.75 \\ \mathrm{km} & 83.75 \\ \mathrm{km} & 13.33 \\ \mathrm{km} & 8.869 \ (8), \ 3.2 \ (4) \\ & 12 \\ & 8 \end{array}$ |


### Since from Micheal Benedikt

# FCC-ee Energy range & luminosity

•  $e^+e^-$  first in the tunnel


∩ FCC

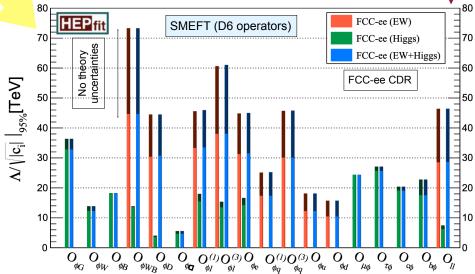
- Producing in a clean environment all the heaviest SM particles
- Extending sensitivity to weakly coupled BSM models



| Working point                                         | Z, years 1-2      | Z, later                                                    | WW, years 1-2 | WW, later | ZH                               | $t\overline{t}$      |                      |
|-------------------------------------------------------|-------------------|-------------------------------------------------------------|---------------|-----------|----------------------------------|----------------------|----------------------|
| $\sqrt{s}$ (GeV)                                      | 88, 91,           | 88, 91, 94 15                                               |               | 157,163   |                                  | 340 - 350            | 365                  |
| Lumi/IP $(10^{34}  \mathrm{cm}^{-2} \mathrm{s}^{-1})$ | 70                | 140                                                         | 10            | 20        | 5.0                              | 0.75                 | 1.20                 |
| Lumi/year $(ab^{-1})$                                 | 34                | 68                                                          | 4.8           | 9.6       | 2.4                              | 0.36                 | 0.58                 |
| Run time (year)                                       | 2                 | 2                                                           | 2             | 0         | 3                                | 1                    | 4                    |
|                                                       |                   |                                                             |               |           | $1.45 \times 10^{6} \mathrm{ZH}$ | $1.9 \times 10^{-1}$ | $0^6 t \overline{t}$ |
| Number of events                                      | $6 \times 10^{1}$ | $6 \times 10^{12} \text{ Z}$ $2.4 \times 10^{12} \text{ Z}$ |               | $^{8}$ WW | +                                | +330k                | ZH                   |
|                                                       |                   |                                                             |               |           | 45k WW $\rightarrow$ H           | $+80 \mathrm{kWW}$   | $J \to H$            |

## FCC-ee: a great Higgs factory, and so much more




| S                                                                                                     |                     |              |                        |                                             |        |
|-------------------------------------------------------------------------------------------------------|---------------------|--------------|------------------------|---------------------------------------------|--------|
| Observable                                                                                            | present             | FCC-ee       | FCC-ee                 | Comment and                                 |        |
|                                                                                                       | value $\pm$ error   | Stat.        | Syst.                  | leading exp. error                          |        |
| $m_{\rm Z}  (\rm keV)$                                                                                | $91186700 \pm 2200$ | 4            | 100                    | From Z line shape scan                      | t      |
|                                                                                                       |                     |              |                        | Beam energy calibration                     |        |
| $\Gamma_{\rm Z} \ (\rm keV)$                                                                          | $2495200 \pm 2300$  | 4            | 25                     | From Z line shape scan                      |        |
|                                                                                                       |                     |              |                        | Beam energy calibration                     |        |
| $\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$                                                        | $231480 \pm 160$    | 2            | 2.4                    | from $A_{FB}^{\mu\mu}$ at Z peak            |        |
|                                                                                                       |                     |              |                        | Beam energy calibration                     |        |
| $1/\alpha_{\rm QED}({ m m_Z}^2)(	imes 10^3)$                                                          | $128952 \pm 14$     | 3            | $\operatorname{small}$ | from $A_{FB}^{\mu\mu}$ off peak             |        |
|                                                                                                       |                     |              |                        | QED&EW errors dominate                      |        |
| $\mathrm{R}^{\mathrm{Z}}_{\ell}~(	imes 10^3)$                                                         | $20767 \pm 25$      | 0.06         | 0.2 - 1                | ratio of hadrons to leptons                 |        |
|                                                                                                       |                     |              |                        | acceptance for leptons                      |        |
| $\frac{\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)}{\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})}$ | $1196 \pm 30$       | 0.1          | 0.4 - 1.6              | from $R_{\ell}^{Z}$ above                   | Z      |
| $\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$                                                     | $41541 \pm 37$      | 0.1          | 4                      | peak hadronic cross section                 |        |
|                                                                                                       |                     |              |                        | luminosity measurement                      |        |
| $N_{\nu}(	imes 10^3)$                                                                                 | $2996 \pm 7$        | 0.005        | 1                      | Z peak cross sections                       |        |
|                                                                                                       |                     |              |                        | Luminosity measurement                      |        |
| $R_b (\times 10^6)$                                                                                   | $216290 \pm 660$    | 0.3          | < 60                   | ratio of bb to hadrons                      |        |
|                                                                                                       |                     |              |                        | stat. extrapol. from SLD                    |        |
| $A_{FB}^{b}, 0 \ (\times 10^4)$                                                                       | $992 \pm 16$        | 0.02         | 1-3                    | b-quark asymmetry at Z pole                 |        |
|                                                                                                       |                     |              |                        | from jet charge                             |        |
| $\mathbf{A}_{\mathrm{FB}}^{\mathrm{pol},\tau}$ (×10 <sup>4</sup> )                                    | $1498 \pm 49$       | 0.15         | $<\!\!2$               | au polarization asymmetry                   |        |
|                                                                                                       |                     |              |                        | $\tau$ decay physics                        |        |
| $\tau$ lifetime (fs)                                                                                  | $290.3 \pm 0.5$     | 0.001        | 0.04                   | radial alignment                            |        |
| $\tau \text{ mass (MeV)}$                                                                             | $1776.86 \pm 0.12$  | 0.004        | 0.04                   | momentum scale                              |        |
| $\tau$ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)                                                   | $17.38 \pm 0.04$    | 0.0001       | 0.003                  | $e/\mu$ /hadron separation                  | ţ      |
| $m_W (MeV)$                                                                                           | $80350 \pm 15$      | 0.25         | 0.3                    | From WW threshold scan                      | t      |
| $\mathbf{D} = (\mathbf{M}, \mathbf{M})$                                                               | 0005 1 40           | 1.0          | 0.0                    | Beam energy calibration                     | W      |
| $\Gamma_{\rm W} ~({\rm MeV})$                                                                         | $2085 \pm 42$       | 1.2          | 0.3                    | From WW threshold scan                      |        |
| $(-2)(-10^4)$                                                                                         | 1150 1 400          |              |                        | Beam energy calibration                     |        |
| $\frac{\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)}{10^{3}}$                                       | $1170 \pm 420$      | 3            | small                  | from $R_{\ell}^{W}$                         |        |
| $N_{\nu}(\times 10^3)$                                                                                | $2920 \pm 50$       | 0.8          | small                  | ratio of invis. to leptonic                 |        |
| (21.11.12)                                                                                            |                     |              |                        | in radiative Z returns                      | t<br>t |
| $m_{top} (MeV/c^2)$                                                                                   | $172740 \pm 500$    | 17           | small                  | From tt threshold scan                      | top    |
| $\mathbf{D} = (\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}^{2})$                                      | 1410 1 200          | 45           | 12                     | QCD errors dominate                         | · '    |
| $\Gamma_{\rm top}~({\rm MeV/c}^2)$                                                                    | $1410 \pm 190$      | 45           | small                  | From $t\bar{t}$ threshold scan              |        |
| ) () SM                                                                                               | 10.100              | 0.10         |                        | QCD errors dominate                         |        |
| $\lambda_{ m top}/\lambda_{ m top}^{ m SM}$                                                           | $1.2 \pm 0.3$       | 0.10         | $\operatorname{small}$ | From $t\bar{t}$ threshold scan              |        |
| ++72                                                                                                  | 1.0007              | 05 150       |                        | QCD errors dominate                         |        |
| ttZ couplings                                                                                         | ± 30%               | 0.5 - 1.5 ~% | small                  | From $\sqrt{s} = 365 \text{GeV} \text{run}$ | l –    |

# **Precision EW measurements**

- Many interconnected measurements
  - The whole FCC-ee run plan is essential (Z,W,top)-٠
  - Complementary to Higgs for New Physics ٠
  - Huge statistics  $\rightarrow$  precision •

∩ FCC

- Real chance of discovery
- Most of the work is (will be) on systematics ٠
  - Experimental and theoretical



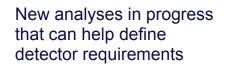
arXiv:2106.13885

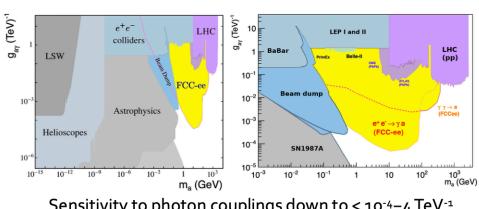
# Flavor Factory opportunities

| Particle production $(10^9)$ | $B^0$ | $B^-$ | $B_s^0$ | $\Lambda_b$ | $c\overline{c}$ | $\tau^{-}\tau^{+}$ |
|------------------------------|-------|-------|---------|-------------|-----------------|--------------------|
| Belle II                     | 27.5  | 27.5  | n/a     | n/a         | 65              | 45                 |
| $\mathrm{FCC}$ - $ee$        | 400   | 400   | 100     | 100         | 600             | 170                |

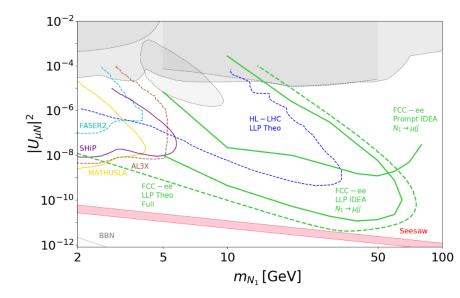
~10 times Belle's stat Boost at the Z!

- Enormous statistics 10<sup>12</sup> bb, cc, 2x10<sup>11</sup> тт events
- Clean environment
- Favourable kinematics -> boost
- Excellent vertexing (smaller beam pipe)


### PROMISING OBSERVABLES


- Rare b-hadron decays with TT pairs in the final state.
- Charged-current b-hadrons decays with a TV pair in the final state.
- Lepton flavour violating τ decays
- Lepton-universality tests in τ decays.

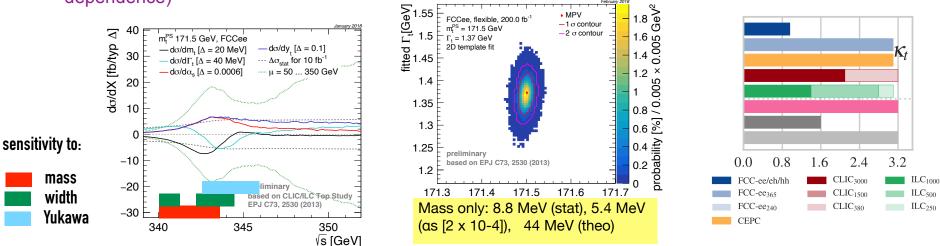
# Sensitivity for weakly coupled objects (BSM)


- Dark photons:  $e^+e^- \rightarrow A'\gamma$ ,  $e^+e^- \rightarrow A'H$  or Z'H
- ALPS:  $e^+e^- \rightarrow a\gamma$ ,  $\gamma\gamma \rightarrow a$
- LLPs from H/Z exotic decays
- Heavy Neutral Leptons

○ FCC

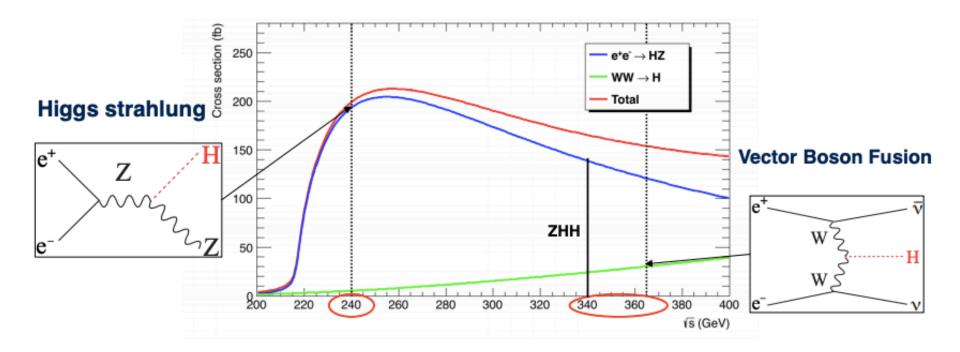





Sensitivity to photon couplings down to < 10<sup>-4</sup>-4 TeV<sup>-1</sup> (3 orders of magnitude improvement)



# Top physics


FCC

- Threshold region allows most precise measurements of top mass, width, and estimate of Yukawa coupling.
  - Precision on top Yukawa coupling from the measurements at thresholds ~10% precision (profiting of the better  $\alpha_s$ ).
  - But, HL-LHC result of about 3.1% already better (with FCC-ee Higgs measurements removing the model dependence)



Run at 365 GeV used also for measurements of top EWK couplings (at the level of 10<sup>-2</sup>-10<sup>-3</sup>) and FCNC in the top sector.

# Higgs production at FCC-ee

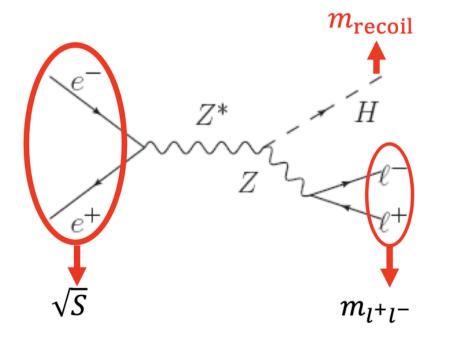


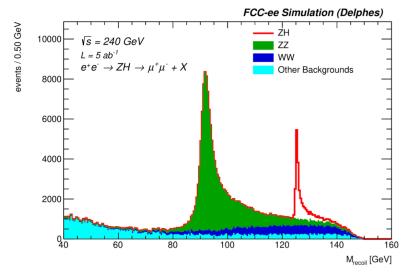
• Optional run at 125 GeV  $e^+e^- \rightarrow H$  direct probe of electron-Yukawa coupling.

# Higgs coupling precision expectation

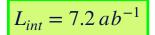
|        | FCC-ee                                                                                | FCC-Int                                                                                                                                                                                                                                                                        |                                                                                                                                                           |
|--------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| HL-LHC | + 240 GeV                                                                             | + 240<br>+365 GeV                                                                                                                                                                                                                                                              | + FCC-hh                                                                                                                                                  |
| 0.99   | 0.88                                                                                  | 0.41                                                                                                                                                                                                                                                                           | 0.19                                                                                                                                                      |
| 0.99   | 0.20                                                                                  | 0.17                                                                                                                                                                                                                                                                           | 0.16                                                                                                                                                      |
| 2.00   | 1.20                                                                                  | 0.90                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                       |
| 1.60   | 1.3                                                                                   | 1.3                                                                                                                                                                                                                                                                            | 0.31 🗙                                                                                                                                                    |
| 10.0   | 10.0                                                                                  | 10.0                                                                                                                                                                                                                                                                           | 0.7 🚽                                                                                                                                                     |
| Coming | 1.50                                                                                  | 1.30                                                                                                                                                                                                                                                                           | 0.96                                                                                                                                                      |
| 3.20   | 3.10                                                                                  | 3.10                                                                                                                                                                                                                                                                           | 0.96                                                                                                                                                      |
| 2.50   | 1.00                                                                                  | 0.64                                                                                                                                                                                                                                                                           | 0.48                                                                                                                                                      |
| 4.40   | 4.00                                                                                  | 3.90                                                                                                                                                                                                                                                                           | 0.43 😾                                                                                                                                                    |
| 1.60   | 0.94                                                                                  | 0.66                                                                                                                                                                                                                                                                           | 0.46                                                                                                                                                      |
| 1.9    | 0.22                                                                                  | 0.19                                                                                                                                                                                                                                                                           | 0.024                                                                                                                                                     |
|        | 0.99<br>0.99<br>2.00<br>1.60<br>10.0<br><i>Coming</i><br>3.20<br>2.50<br>4.40<br>1.60 | 0.99         0.88           0.99         0.20           2.00         1.20           1.60         1.3           10.0         10.0           Coming         1.50           3.20         3.10           2.50         1.00           4.40         4.00           1.60         0.94 | HL-LHC+ 240 GeV+ 240<br>+ 365 GeV0.990.880.410.990.200.172.001.200.901.601.31.310.010.010.0Coming1.501.303.203.103.102.501.000.644.404.003.901.600.940.66 |

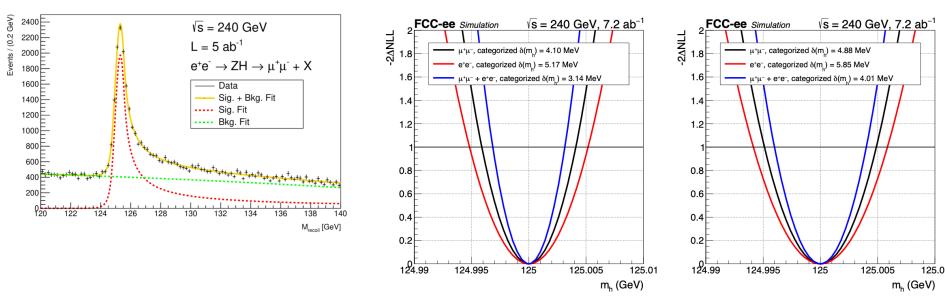
Table adapted from <u>arxiv:1905.03764</u>


- FCC-ee measures  $g_{HZZ}$  to 0.2% (absolute, model-independent, standard candle) from  $\sigma(ZH)$ 
  - $\Gamma(H)$ ,  $g_{Hbb}$  ,  $g_{Hcc}$  ,  $g_{H\tau\tau}$ ,  $g_{HWW}$  , follow
  - Standard candle fixes all HL-LHC couplings
- FCC-hh produces over 10<sup>10</sup> Higgs bosons, 10<sup>8</sup> ttH and 2x10<sup>7</sup> HH pairs:
  - Improving precision on  $g_{Htt}, g_{HHH}$ 
    - with top EW couplings (and other BRs) measured at FCC-ee
  - Access to Rare Decays:  $\mu\mu, \gamma\gamma, Z\gamma$


### • FCC-ee + FCC-hh is outstanding:

- All accessible couplings with per-mil precision
- Self-coupling with per-cent precision

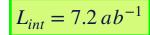

# **Recoil method**


$$m_{\rm recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$$

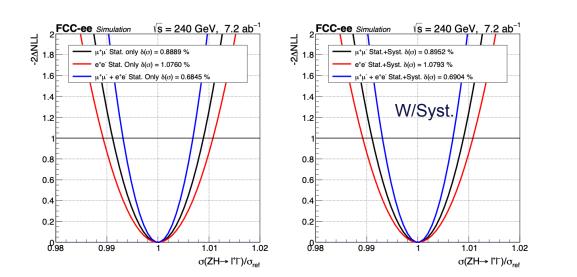


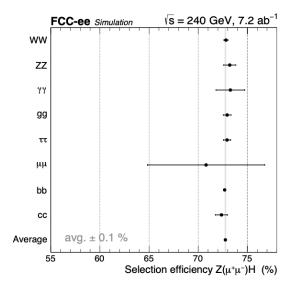


# Higgs mass





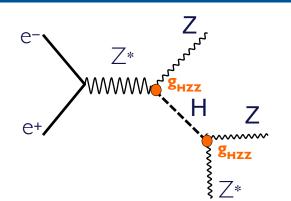


• Higgs mass, fit with analytic shape:  $\sigma(m_H) = 3.1(4.0)$  MeV stat(sys)


- Precise m(H) measurement is needed for a possible monochromatic run at  $e^+e^- \rightarrow H$
- Several effects investigated to extract detector requirements

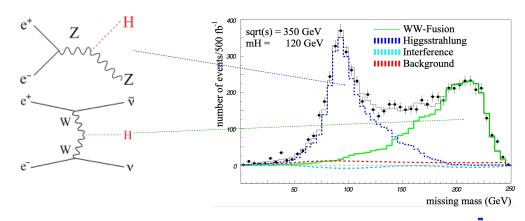
# Total ZH production cross section



- Measuring the ZH cross-section in a model independent way is possible at electron-positron colliders.
  - Essential piece for "model independent" Higgs couplings determination (and more)
  - Estimated sensitivity (CDR) ~0.5%
- Challenge to keep analysis as much as possible a decay-mode independent
- Preliminary estimate from Delphes analysis: combined uncertainty 0.68(0.69 w/syst)%
  - Systematics considered: BES,  $\sqrt{s}$ , lepton energy scale







# Higgs width (from 2019 CDR)

• Model independent determination of the total Higgs decay width down to 1.3% with runs at  $\sqrt{s}$ =240 and  $\sqrt{s}$ =365 GeV

### ee $\rightarrow$ HZ & H $\rightarrow$ ZZ at $\sqrt{s}$ = 240 GeV



### WW $\rightarrow$ H vv $\rightarrow$ bbvv at $\sqrt{s} = 365 \text{ GeV}$



\* σ<sub>HZ</sub> is proportional to  $g_{HZZ}^2$ \* BR(H → ZZ) = Γ(H → ZZ) / Γ<sub>H</sub> is proportional to  $g_{HZZ}^2 / Γ_H$ • σ<sub>HZ</sub> × BR(H → ZZ) is proportional to  $g_{HZZ}^4 / Γ_H$ \* Infer the total width Γ<sub>H</sub>

$$\Gamma_H \propto \frac{\sigma_{WW \to H}}{BR(H \to WW)} = \frac{\sigma_{WW \to H \to b\overline{b}}}{BR(H \to WW) \times BR(H \to b\overline{b})}$$

# First analysis of the Higgs width

- First study at 240GeV  $H \rightarrow ZZ^*$  (Delphes):
  - $Z(\ell^+\ell^-)Z(jj)Z(\nu\bar{\nu})$ , one off-shell from Higgs decay
  - Orthogonal selection of the final states
  - Fit the BDT score
  - Determine the uncertainty on the Higgs width from the cross-section

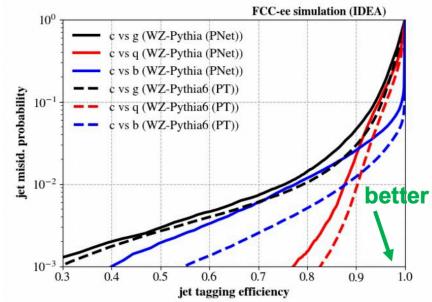
$$\Gamma_H \propto \frac{\sigma_{ZH}^2}{\sigma_{ZH(ZZ^*)}}$$

$$\frac{\delta \Gamma_{H}}{\Gamma_{H}} \sim \frac{\delta \sigma(e^{+}e^{-} \rightarrow ZH, H \rightarrow ZZ)}{\sigma(e^{+}e^{-} \rightarrow ZH, H \rightarrow ZZ)} \sim 3.8\%$$

Other decay channels work in progress

$$L_{int} = 7.2 ab^{-1}$$

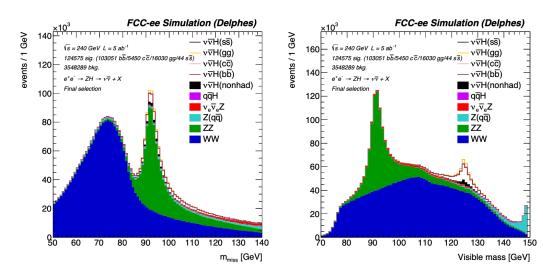
# A new tagger from CMS to FCC-ee: ParticleNet


• A must for any Higgs factory

FCC

- Precise measurement of all Higgs couplings to ff, VV
- H(cc), H(gg) won't be measured at HL-LHC
- Flavour tagging is the key
  - Algorithm based on state-of-the-art advanced Neural Networks
  - Evolving to include u,d and taus...

### Relevant at all energies: Z, WW, Higgs & top


- Requirements on detector can be obtained:
  - Position of innermost layer of vertex as close as possible to the beam pipe.
    - Also smaller beam pipe
  - Particle ID capabilities (timing?)

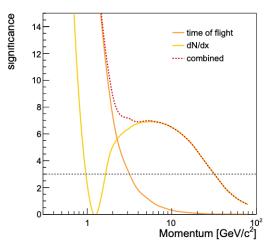


Few microns resolution needed on  $\sigma(d_0)$ Requirements from tagging charm and more (s or tau) stricter than bottom

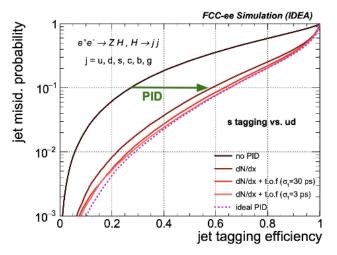
# Higgs hadronic couplings

- Considering ZH process with  $H \rightarrow b\bar{b}, c\bar{c}, s\bar{s}, gg$  (and other) and various Z final states:
  - $Z \to \ell^+ \ell^-$  : clean but smaller BR, fit to the Recoil Mass
  - $Z \to \nu \bar{\nu}$ : Good efficiency and reasonable purity. 2D fit with the Visible Mass and the Missing Mass
  - $Z \rightarrow q\bar{q}$ : will add significant statistical power. Work in progress.

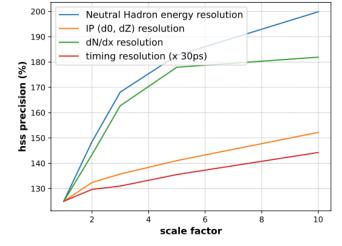



$$L_{int} = 5.0 \, ab^{-1}$$

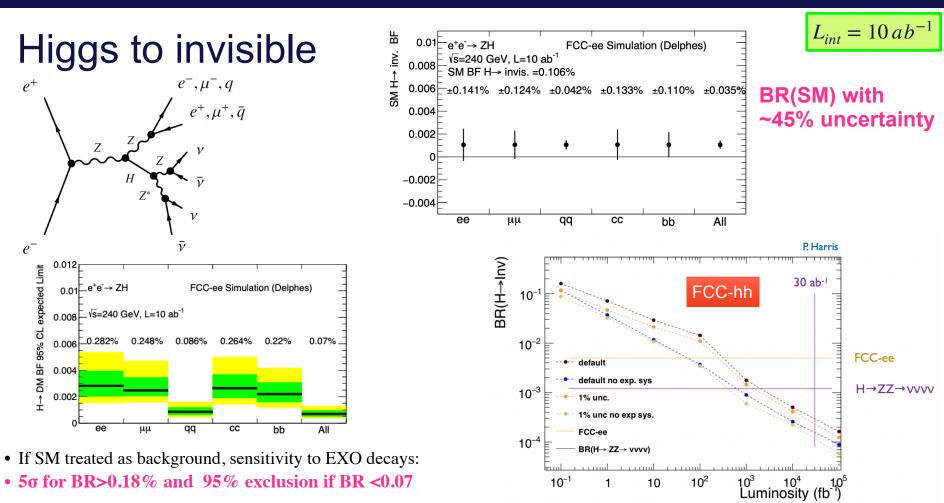
| Signal strength $Z \rightarrow \ell^+ \ell^-$   | Unc.%                                 |
|-------------------------------------------------|---------------------------------------|
| $bar{b}$<br>$car{c}$<br>gg<br>other<br>$sar{s}$ | $0.81 \\ 4.93 \\ 2.73 \\ 2.19 \\ 410$ |


| $Z  ightarrow  u ar{ u}$ channel                                                           |         |  |     |  |  |  |
|--------------------------------------------------------------------------------------------|---------|--|-----|--|--|--|
| $H \rightarrow b\bar{b}  H \rightarrow c\bar{c}  H \rightarrow s\bar{s}  H \rightarrow gg$ |         |  |     |  |  |  |
| 0.4                                                                                        | 0.4 2.9 |  | 1.2 |  |  |  |

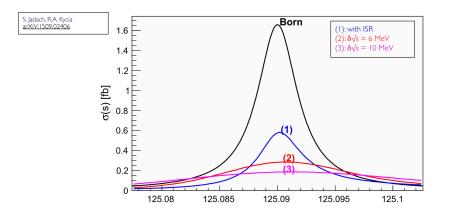
when scaled to  $10 a b^{-1}$  $\delta \mu (H \rightarrow s \bar{s}) \approx 100 \% \dots$  intriguing


# New opportunities: strange tagging




Adding in the Delphes simulation particle ID capabilities (dN/dx, dE/ dx) and time of flight measurement (30ps resolution for this plot)

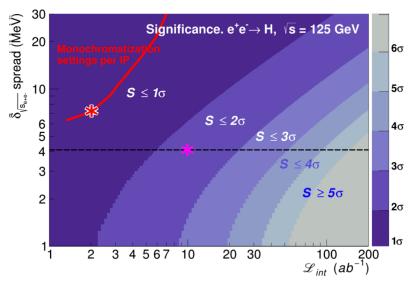



Training the ParticleNet with the additional information and comparing to ideal strange identification



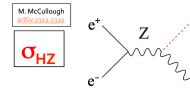
Interesting to study the dependence on the uncertainties on the degradation of the detector performance

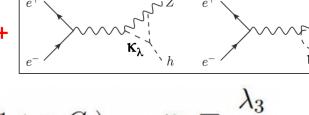



### Electron Yukawa coupling



- Something unique: electron Yukawa coupling from  $e^+e^- \rightarrow H$
- One of the toughest challenges, which requires:
  - Higgs boson mass prior knowledge to a couple MeV
  - Huge luminosity (i.e., several years with possibly 4 IPs)
  - (Mono)chromatisation:  $\Gamma_{H}$  (4.2 MeV)  $\ll \delta_{\sqrt{s}}$  (100 MeV)
  - Continuous monitoring and adjustment of  $\sqrt{s}$
  - Different e<sup>+</sup> and e<sup>-</sup> energies (to avoid integer spin tune)
  - Extremely sensitive event selection against SM backgrounds

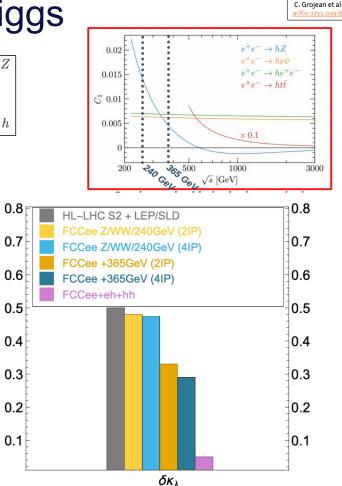

### arXiv:2107.02686


$$\sigma_{\mathrm{ee} 
ightarrow \mathrm{H}} = rac{4 \pi \Gamma_{\mathrm{H}} \Gamma(\mathrm{H} 
ightarrow \mathrm{e}^{+} \mathrm{e}^{-})}{(s - m_{\mathrm{H}}^{2})^{2} + m_{\mathrm{H}}^{2} \Gamma_{\mathrm{H}}^{2}},$$



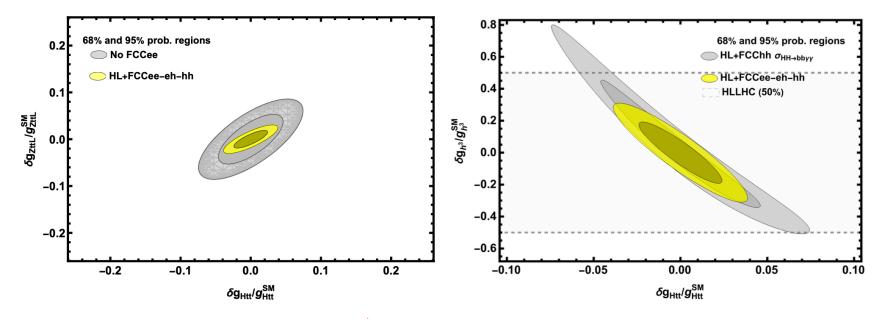
5y run @optimal monochromatization could achieve  $1.7\sigma$  with 4IPs

# Higgs self-coupling with single Higgs






SM


$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} (1 + \kappa_\lambda C_1) \qquad \kappa_\lambda$$

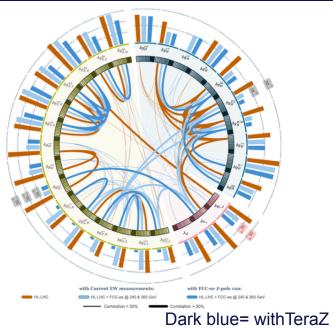
- The precision of FCC-ee on the ZH cross section measurement (0.1%) allows to exploit the higher order effects from the Higgs self-coupling and have an estimate of  $\delta k_{\lambda} \approx 30\%$  with 4IPs
- Measurements at different √s (365GeV) needed to lift degeneracy between processes

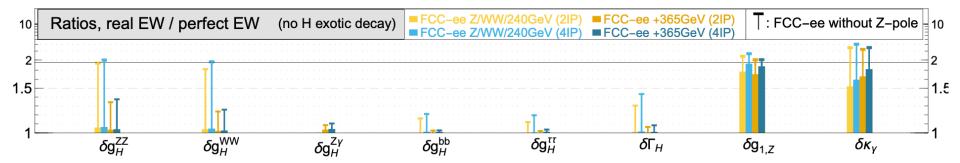


# FCC-ee & FCC-hh complementarity - $k_t$ and $k_{\lambda}$

FCC




- The determination of the Ztt couplings from  $e^+e^- \rightarrow t\bar{t}$  during the 365GeV run of the FCC-ee, in conjunction with the ttH/ttZ FCC-hh would help to reduce the few per-cent uncertainty on  $\delta g_{tt}$  from the HL-LHC to ~1%.
- Current estimates combining the  $bb\gamma\gamma$ ,  $bb\tau\tau$ , bbZZ, bbbb decay channels suggest that a precise determination of the self-coupling with an uncertainty of 3.4 7.8% would be within the reach of the 100 TeV pp collider


# Interplay of EWK measurement on Higgs

https://doi.org/10.1140/epjp/s13360-021-01847-5 J. de Blas et al. in Snowmass 2021 (2022)

○ FCC

- Fit to new physics effects parameterised by dimension 6 SMEFT operators
  - · Model independent result only for global fit
- The Z-pole run is essential to isolate Higgs measurements and ensure that uncertainties from EW coupling do not affect Higgs couplings
- The precision measurements of the Z pole run affect significantly Higgs operators: almost ideal if present, and a factor 2 worse if absent!





# Summary & next steps

FCC-ee is the amazing Higgs factory HEP needs, and it brings so much more. Lots of physics to be done by 4 experiments with different detectors Best way to prepare the way for high energy exploration with FCC-hh

- FCC Feasibility study ongoing: "mid-term" report coming out soon!
- Working full steam toward completion of the Feasibility study by 2025 to build the strongest case for the FCC project for the next European Strategy
- ECFA Workshop building a collaboration amongst all proposed Higgs Factories to share the knowledge across projects and educate the new generations

SECOND • ECFA • WORKSHOP on e<sup>+</sup>e<sup>-</sup> Higgs / Electroweak / Top Factories

https://agenda.infn.it/event/34841/

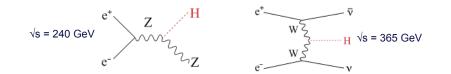
11-13 October 2023 Paestum / Salerno / Italy

### Topics:

- Physics potential of future Higgs and electroweak/top factories
- Required precision (experimental and theoretical)
- EFT (global) interpretation of Higgs factory measurements
- Reconstruction and simulation
- Software
- Detector R&D

# BACKUP

# **Detector effects**

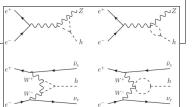

FCC

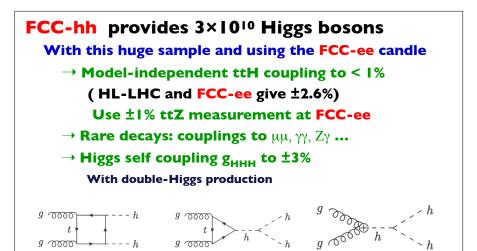
### Some extended studies performed regarding detector effects

- > Looking at impact on  $m_H$  resolution  $\rightarrow$  to be compared to **stat-only (syst.)**, Nominal
- Going from crystal calorimeter to Dual readout (tight artificial smearing applied to electrons)
- ➢ Nominal 2 T field → 3 T ( stronger field → better tracking )
- ➢ IDEA drift chamber → CLD silicon tracker
- Important impact of BES uncertainties
- ➤ Assuming "perfect" (== gen-level) momentum resolution → Not so far from the nominal

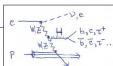
|   | Fit configuration                   | $\mu^+\mu^-$ channel | $e^+e^-$ channel | $\operatorname{combination}$ |
|---|-------------------------------------|----------------------|------------------|------------------------------|
|   | Nominal                             | 4.10 (4.88)          | 5.17(5.85)       | 3.14 (4.01)                  |
| 1 | Inclusive                           | 4.84(5.53)           | 6.16(6.73)       | 3.75(4.50)                   |
| r | Degradation electron resolution (*) | 4.10 (4.88)          | 5.98(6.49)       | 3.32(4.11)                   |
|   | Magnetic field 3T                   | 3.38(4.28)           | 4.30(5.00)       | 2.60(3.54)                   |
|   | CLD 2T (silicon tracker)            | 5.51 (6.07)          | 6.20 ( $6.70$ )  | 4.01(4.66)                   |
|   | BES 6% uncertainty                  | 4.10(5.01)           | 5.17(6.10)       | 3.14(4.09)                   |
|   | Disable BES                         | 2.27(3.42)           | 3.11 (4.04)      | 1.80(2.99)                   |
|   | Ideal resolution                    | 2.89(3.95)           | 3.89(4.56)       | 2.39(3.33)                   |
|   | Freeze backgrounds                  | 4.10 (4.88)          | 5.17(5.85)       | 3.14(4.00)                   |
|   | Remove backgrounds                  | 3.37(4.34)           | 3.85(4.80)       | 2.49(3.56)                   |
|   |                                     |                      |                  |                              |

# FCC Synergies: The Higgs boson





**FCC-ee** provides  $10^6$  HZ +  $10^5$  WW  $\rightarrow$  H events

Absolute determination of  $g_{HZZ}$  to ±0.17%


Model-independent determination of  $\Gamma_{\mu}$  to ±1%

- → Fixed « candle » for all other measurements including those made at HL-LHC or FCC-hh
- → Measure couplings to WW, bb, ττ, cc, gg, ... Even possibly the Hee coupling!
- $\rightarrow$  First sensitivity to  $g_{\rm HHH}$  to ~30% with 4IPs





FCC-eh provides 2.5 10<sup>6</sup> Higgs bosons With the FCC-ee candle, further improves on several measurements (e.g., g<sub>HWW</sub>)

