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Standard Model of Particle Physics

All renormalisable terms
allowed by symmetries
in Minkowski space

19 parameters —
all have been measured

Can be extrapolated all
the way to Planck scale

For central experimental
values My = 125.18 GeV
and My = 173.1 GeV
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(Buttazzo et al 2013)

A becomes negative at uy = 9.9 x 10° GeV
Minimum value A, & —0.015 at i, ~ 2.8 X 1017 GeV
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Vacuum Instability London

Renormalisation group improved Higgs effective potential

V(p) ~ A(gp)p*
Becomes negative
at ¢ > ¢C =~ 1010GeV - ===~ tree level
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True vacuum at
Planck scale?

—_

Current vacuum
metastable against
guantum tunnelling
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Barrier at
Qpar = 4.6 X 1019 GeV,

height V (¢hpar) ~ (4.3 x 10° GeV)"
(Based on a 3-loop calculation by Bednyakov et al. 2015)
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Bubble Nucleation London

» Bubble nucleation rate:

B where

o '~e”
> B = “bounce” instanton action (Coleman 1977)
> Solution of Euclidean equation of motion

» Spherical symmetric bounce
= Lorentz invariant

» Bubble expands at the speed of light
(see, however, De Luca, Kehagias & Riotto JCAP 2022)

» Bubble interior:
Gravitational collapse in a microscopic time
(Unless trapped behind an event horizon)
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https://inspirehep.net/literature/2085732
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Bubble Nucleation London

» Simple toy model: (Fubini 1976)
V(gp) = i/lgb‘* with constant 2 < 0

» Exact solution

() = \/% L

2

. 81
» Action B = 3

» When Aruns, B =

812

3|/1min| ~ 1800

(depending on Higgs and top masses)
= extremely slow rate T’ ~ pi. e™B

» Can be enhanced by higher-dimensional operators, e.g., $° (Branchina et al 2014)
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Bubbles from Particle Collisions eneon

Non-vacuum initial state makes the
calculation more difficult:

Classical solution on a complex time path
(Rubakov,Son&Tinyakov 1992)

Numerical solutions for 1+1D toy model
(Demidov&Levkov 2015)

and analytical estimates
(Kiselev 1992; Gorsky&Voloshin 1993;
Voloshin 1994; Kuznetson&Tinyakov 1997, ...):

Suppression largely unchanged
Can be understood as entropy suppression

1.0 - « vacuum decay Sy = "’7;?204/2;31/ 3

, .
Ssuper = Squb + *Slunncl

0.5 1.0

Energy E in units of E; = 1670 34V

(Strumia 2023)
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Past Light Cone

» Assume: Bubbles grow at the speed of light and destroy everything they hit
= There cannot have been any bubbles in our past light cone
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Past Light Cone

» Probability of no bubble in the past light cone:
P(N =0) = eV,
where (V') is the expected number of bubbles (dn = dt/a),

4 No
(V) = ?nf dn a(m)*(moe —n)*r(n)
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» Therefore, we must have (V') < 1

» Integrate over the whole history of the Universe:
inflation, reheating, hot Big Bang, and late Universe

d(N)

dt

conformal time n

» (For anthropists: At < 1)

comoving distance

A. Rajantie, Higgs Vacuum Metastability, 12 September 2023



Imperial College

Late Universe Stability Bounds London
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(Buttazzo et al. 2013)

» Number of bubbles in past lightcone: (V') ~ 0.125T'/H{
» Metastability: 0 < (V') < 1, no contradiction with observations
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Effect of Gravity

» Bubble interior:
Gravity important

» Standard Model symmetries allow
one more renormalisable term,
the Higgs-curvature coupling ¢:
L= Loy +ERPT
(Chernikov&Tagirov 1968)
where R is the spacetime curvature

» Required for renormalisability,
runs with energy —
Cannot be set to zero!

» Last unknown parameter
in the Standard Model
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Measuring ¢

» Curved spacetime:

L=Lsy+ERPTP
» Ricci scalar R very small today
= Difficult to measure ¢

Fine-tuning A=<10

» Colliders: Suppresses Higgs couplings
° LHC Bound |¢| < 2.6 X 101> (Atkins&Calmet 2012) |
> Future colliders: [é] < 101! (Wu et al. 2019) cerc  Sile

Allowed by Higgs data
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(Wu et al. 2019)
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Late Universe Stability Bounds

» Find the gravitational
instanton by solving
field + Einstein equations
numerically (AR&Stopyra 2016)
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Mn = 125.09 GeV,
M1 =173.21 GeV

Stability region
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Higgs Mass, Mh (GeV)
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Hot Big Bang

» High temperature:
Higher bubble nucleation rate
(Arnold&Vokos 1992; Espinosa et al 2008)
» If reheat temperature Try
is high enough, this
dominates over late-time
contribution
= More unstable

» Top mass bound: (Delle Rose et al 2016)

M, o — 0.1184 M,
< 0.283 +0.4612
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Meta-stability
region

my = 173.1 GeV,
my, = 125.18 GeV

Stability region

124 126
Higgs mass, m;,/GeV

(Markkanen, AR, Stopyra, 2018)

A. Rajantie, Higgs Vacuum Metastability, 12 September 2023



Imperial College

Bubbles from Black Holes London

Black holes can catalyse vacuum decay

(Hiscock 1987; Berezin et al 1991) : ;ﬁ:_g_g%:
A= =0, |

Burda et al 2016: i
Planck-scale black holes catalyse R
vacuum decay faster than they evaporate

= Excludes primordial BHs with mass M < 1012 kg

Shkerin&Sibiryakov 2022:
Thermal effects due to Hawking radiation stabilise
(see also Strumia 2022)

10*  10°  10°
seed mass M. /M,

= No primordial black hole constraints from vacuum stability?
(Burda et al 2016)

A. Rajantie, Higgs Vacuum Metastability, 12 September 2023




Imperial College
London

Higgs Fluctuations from Inflation

Quantum fluctuations:
P(¢) o exp [ 374 V(¢)]

Take the Higgs over the barrier
if the Hubble rate is high, |
H = ¢bar =~ OlOGeV tree level

(Espinosa et al. 2008; quantum corrected, -~
Lebedev&Westphal 2013;
Kobakhidze&Spencer-Smith 2013;
Fairbairn&Hogan 2014;

Hook et al. 2014)

Does this imply an upper limit on
the scale of inflation
H < 101%°GeV ?
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Higgs-Curvature Coupling
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(De)Stabilising the Potential

Minimal scenario:
-o-|nstability Threshold

Standard Model + m?y? chaotic inflation, by =0

Eeyy = 1/6

no direct coupling to inflaton

If H 2 pjpse = 6.6 X 10°GeV
and there is no new physics,
vacuum stability during inflation
requires ¢ = 0.06
(Markkanen,Nurmi,AR,Stopyra 2018;
Mantziris,Markkanen,AR 2021,2022)

Stability at the end of inflation
requires ¢ <9
(Herranen,Markkanen,Nurmi,AR 2015; (MNRS 2018)
Figueroa,AR&Torrenti 2018)

A. Rajantie, Higgs Vacuum Metastability, 12 September 2023



Imperial College

Vacuum Stability Constraint on & London

» Stability both during and through the end of inflation requires
0.06 <SS9
» 15 orders of magnitude stronger than the LHC bound

€] S 2.6 x 101°

» Caveats:
> Assumes no direct coupling to inflaton (see, e.g., Ema et al. 2016, 2017)
— Would still need |€| < 0(1)

> Assumes no new physics
— Could stabilise potential altogether, or destabilise further

> Assumes high scale inflation H = 10° GeV
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Summary

» Experimental results

= The Standard Model vacuum is metastable unless stabilised by new physics
» No contradiction with observations, but can provide interesting constraints:
Reheating temperature
Primordial black holes (?)
Scale of inflation
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(Non-minimal) Higgs-curvature coupling
» Particle collisions highly unlikely to trigger vacuum decay

» Depends sensitively on any new physics!
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