

Search for Higgs boson pairs in the *bbyy* final state in ATLAS

Higgs Hunting 2023

Stockholm University, ATLAS Experiment.

Introduction to $HH \rightarrow b\overline{b}\gamma\gamma$

Features of $HH \rightarrow b\overline{b}yy$:

 Gluon-gluon Fusion (ggF) and Vector Boson Fusion (VBF) production modes;

 $\sigma_{\rm qqF}$ ~ 31.0 fb and $\sigma_{\rm VBF}$ ~ 1.73 fb.

- Very sensitive channel Despite its small BR (0.26%), it benefits from a clean $m_{_{YY}}$ resolution ($\sigma_{_{YY}}/M_{_{YY}}$ =1.5%)
- Sensitive at low $m_{\rm hh} \rightarrow$ sensitive to κ_{λ}

The κ-framework:

Higgs Trilinear coupling: λ_{HHH}

 $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ $\kappa_{2V} = g_{HHVV} / g_{HHVV}^{SM}$

LO VBF diagrams:

Stockholm University, ATLAS Experiment.

Tom Ingebretsen Carlson

New non-resonant *bbyy* analysis, Ref: ATLAS-CONF-2023-050 Superseding and expanding upon the nonresonant results of Ref:Phys. Rev. D 106 (2021) 052001

Introduction to $HH \rightarrow b\bar{b}\gamma\gamma$

New non-resonant $b\bar{b}yy$ analysis: uses the same data set but supersedes and expands upon the previous nonresonant results.

Improvements of the new $HH \rightarrow b\overline{b}\gamma\gamma$ analysis:

- Optimization on both production modes
- Re-optimized BDT for classification of events
- Includes limits on κ_{2V}
- Effective Field Theory (EFT) interpretations

The κ-framework:

 $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ $\kappa_{2V} = g_{HHVV} / g_{HHVV}^{SM}$

LO VBF diagrams:

Stockholm University, ATLAS Experiment.

Tom Ingebretsen Carlson

New non-resonant *bbyy* analysis, Ref: ATLAS-CONF-2023-050 Superseding and expanding upon the nonresonant results of Ref:Phys. Rev. D 106 (2021) 052001

Analysis strategy

Signal strength: $\mu = \sigma / \sigma_{_{SM}}$

Stockholm University, ATLAS Experiment.

7 signal regions based on the BDT selection

Signal and background modeling:

• Unbinned fits to m_{yy}

Categorization of events:

High mass: $m^*_{b\bar{b}\gamma\gamma} > 350 \text{GeV}$

Low mass: $m_{b\bar{b}\gamma\gamma}^* < 350 \text{GeV}$

• HH signal & H background: Double-sided Crystal Ball function

Improves the signal mass resolution.

cancels detector resolution effects.

Nonresonant \cong bkg: Exponential function

 $m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - (m_{b\bar{b}} - 125) - (m_{\gamma\gamma} - 125)$

New MC with improved statistics in the SRs. \rightarrow Reduced uncertainty on the signal yield (reduced uncertainty on the Spurious Signal¹)

Categorization and fitting strategy

targets small κ_{λ} values

targets large κ_{λ} values

Stockholm University, ATLAS Experiment.

Tom Ingebretsen Carlson

(BDT distributions for Low mass region in backup)

¹Spurious signal is a non-zero signal obtained 5 when fitting the signal plus background model to signal-free MC.

Results: signal strength, κ_{λ} and κ_{2V}

- No significant excess is observed in data (2015-2018)
- Results based on simultaneous unbinned maximum likelihood fit in all categories

Signal strength upper limits at 95% CL:

 $\mu_{VBF+qqF}$ < 4.0 (< 5.0 expected, reduced by 12%)

Limits at 95% CL: -1.4 < κ_{λ} < 6.9 (-2.8 < κ_{λ} < 7.8 expected, reduced by 6%) -0.5 < κ_{2V} < 2.7 (-1.1 < κ_{2V} < 3.3 expected, reduced by 17%)

Stockholm University, ATLAS Experiment.

Effective Field Theory in **bbyy**

EFTs: parameterize new Heavy physics in terms of higher dimensional operators and Wilson coefficients.

Two EFTs in $b\overline{b}yy$: SMEFT & HEFT

Standard Model Effective Field Theory (SMEFT):

 Extends the SM Lagrangian with higher dimensional operators

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{n} \sum_{i} \frac{c_i}{\Lambda^{2n}} \mathcal{O}_i^{4+2n}$$

- Higgs contained in SM doublet
- Dependencies in H background
- Interesting for global combinations
- Include relevant dimension-6 operators

HH signal reweighting: as a function of truth m_{hh} **H background reweighting**: as a function of truth H p_{T}

Stockholm University, ATLAS Experiment.

Tom Ingebretsen Carlson

Example of generic LO ggF SMEFT diagrams.

Ref:Phys. Rev. D 103, 096024 JHEP 10 (2010) 085 arXiv:2304.01968

Effective Field Theory in **bbyy**

EFTs: parameterize new Heavy physics in terms of higher dimensional operators and Wilson coefficients.

Two EFTs in *bbyy*: SMEFT & HEFT

Higgs Effective Field Theory (HEFT) :

- Lagrangian built up by terms with increasing *chiral* dimensions χ or as successive loop order *L*:
 - $\chi = 2L+2.$
- Higgs is a singlet
- Can probe potential decorrelation among couplings
- More general than SMEFT
- Background is less dependent on HEFT than SMEFT

HH signal reweighting: as a function of truth m_{hh}

Stockholm University, ATLAS Experiment.

Tom Ingebretsen Carlson

Example of generic LO ggF HEFT diagrams.

Ref: arXiv:2304.01968

Results: SMEFT

- Strongest SMEFT constraints in ATLAS from a single di-Higgs channel
- Results include linear and quadratic dependencies on the Wilson coefficients

Wilson coefficient	95% CL Observed	95% CL Expected
c _H	[-14.4, 6.2]	[-16.8, 9.7]
<i>c</i> _{<i>H</i>_□}	[- 9.4, 10.2]	[-12.4, 13.7]

Stockholm University, ATLAS Experiment.

Results: HEFT

- Interpretations are made on HEFT m_{hh} shape benchmark points (BM)
- BM 3, 4, 5 and 7 are excluded at 95% CL

Wilson coefficient	95% CL Observed	95% CL Expected
Chhh	[-1.8 ,7.7]	[-3.4 ,8.9]
C _{tthh}	[-0.42, 0.52]	[-0.59, 0.69]
c_{gghh}	[-0.28, 0.73]	[-0.48, 0.94]

Stockholm University, ATLAS Experiment.

Tom Ingebretsen Carlson

(Numerical values of HEFT BM points in backup) Ref: JHEP 03 (2020) 091 arXiv:2304.01968

Thank you for your attention!

Stockholm University, ATLAS Experiment.

Stockholm University, ATLAS Experiment.

VBF: m^*_{bbyy} versus K_{λ}

Stockholm University, ATLAS Experiment.

Monte Carlo samples

Process	Generator	PDF set	Showering	Tune
ggF HH	Роwнед Box v2 [45–47]	PDF4LHC15nlo [48]	Рутніа 8.2 [49]	A14 [50]
VBF HH	MadGraph5_aMC@NLO [51]	NNPDF3.0nlo [52]	Рутніа 8.2	A14
ggF H	NNLOPS [53–57]	PDF4LHC15nlo	Рутніа 8.2	AZNLO [58]
$\operatorname{VBF} H$	Powheg Box v2 [45, 54, 59–65]	PDF4LHC15nlo	Рутніа 8.2	AZNLO
WH	Powheg Box v2	PDF4LHC15nlo	Рутніа 8.2	AZNLO
$qq \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Рутніа 8.2	AZNLO
$gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Рутніа 8.2	AZNLO
tīH	Powheg Box v2 [60–62, 65, 66]	NNPDF3.0nlo	Ρ ΥΤΗΙΑ 8.2	A14
$bar{b}H$	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
tHq	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Ρυτηία 8.2	A14
$\gamma\gamma$ +jets	Sherpa 2.2.4 [67]	NNPDF3.0nnlo	Sherpa 2.2.4	_
$\gamma\gamma bar{b}$	Sherpa 2.2.12 [67]	NNPDF3.0nnlo	Sherpa 2.2.12	_
$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.3LO	Рутніа 8.2	A14

Systematic uncertainties

New non-resonant $b\overline{b}\gamma\gamma$ analysis:

Impact of uncertainties on the expected 95% CL upper limits on $\mu_{\rm HH}$.

Systematic uncertainty source	Relative impact [%]
Experimental	
Photon energy resolution	0.4
Photon energy scale	0.1
Flavor tagging	0.1
Theoretical	
Factorisation and renormalisation scale	4.8
$\mathcal{B}(H \to \gamma \gamma, b\bar{b})$	0.2
Parton showering model	0.2
Heavy-flavor content	0.1
Background model (spurious signal)	0.1

Previous $b\overline{b}yy$ analysis

		Relative impact of the systematic uncertainties [%]		
Source	Туре	Nonresonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$	
Experimental				
Photon energy resolution	Norm. + Shape	0.4	0.6	
Jet energy scale and resolution	Normalization	< 0.2	0.3	
Flavor tagging	Normalization	< 0.2	0.2	
Theoretical				
Factorization and renormalization scale	Normalization	0.3	< 0.2	
Parton showering model	Norm. + Shape	0.6	2.6	
Heavy-flavor content	Normalization	0.3	< 0.2	
$\mathcal{B}(H \to \gamma \gamma, b\bar{b})$	Normalization	0.2	< 0.2	
Spurious signal	Normalization	3.0	3.3	

BDT & categorization

Additional info

- One BDT in HM and one in LM
- Trained to distinguish between signal and $H \rightarrow \gamma \gamma$, trained to distinguish between signal and $H \rightarrow \gamma \gamma$,
- XGboost is used.
- Signal samples: SM ggF HH, SM VBF HH and $\kappa_{\lambda} = \{1, 10, 5.6\}.$

The category division: decided by maximizing the combined number-counting significance

Input variables:

- Baseline variables (same as previous analysis, see table) + additional variables and VBF-jet tagger.
- VBF-jet tagger: classifying events with 4 or more jets. Feeding as input jet kinematics.
- Additional variables: m^*_{bbyy} , ΔR and event shape variables transverse sphercity, planar flow and momentum balance.

Variable	Definition			
Photon-related kinematic variables				
$p_{ m T}/m_{\gamma\gamma}$ η and ϕ	Transverse momentum of each of the two photons divided by the diphoton invariant mass $m_{\gamma\gamma}$ Pseudorapidity and azimuthal angle of the leading and subleading photon			
Jet-related kinematic	variables			
b-tag status	Tightest fixed b-tag working point (60%, 70%, or 77%) that the jet passes			
$p_{\rm T}, \eta$ and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of the two jets with the highest b-tagging score			
$p_{\rm T}{}^{b\bar{b}}$, $\eta_{b\bar{b}}$ and $\phi_{b\bar{b}}$	Transverse momentum, pseudorapidity and azimuthal angle of the b-tagged jets system			
m _{bb}	Invariant mass of the two jets with the highest b-tagging score			
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event			
Single topness	For the definition, see Eq. (1)			
Missing transverse n	nomentum variables			
$E_{\rm miss}^{\rm miss}$ and $\phi^{\rm miss}$	Missing transverse momentum and its azimuthal angle			

BDT score distribution

Stockholm University, ATLAS Experiment.

Myy distributions: Data vs. bkg fit

Stockholm University, ATLAS Experiment.

Results: signal strength, κ_{λ} and κ_{2V}

This *b*by analysis: Limits at 95% CL: $-1.4 < \kappa_{\lambda} < 6.9$ (-2.8 < $\kappa_{\lambda} < 7.8$ expected) $-0.5 < \kappa_{2V} < 2.7$ (-1.1 < $\kappa_{2V} < 3.3$ expected)

Previous *b*byy analysis: Limits at 95% CL: -1.4 < κ_{λ} < 6.5 (-3.2 < κ_{λ} < 8.1 expected) -0.8 < κ_{2V} < 3.0 (-1.6 < κ_{2V} < 3.7 expected)

Improvements compared to previous analysis: Expected limits:

- $\mu_{\text{VBF+ggF}}$ reduced by 12%.
- Width of 1D confidence interval κ_λ (κ_{2ν}) reduced by 6% (17%).

Observed limits:

- $\mu_{\rm HH}$ reduced by 5%.
- Width of 1D confidence interval $\kappa_{\lambda}(\kappa_{2\nu})$ increased by 5% (reduced by 16%).

Additional signal strength limits: μ_{ggF} < 4.1 (< 5.3 expected)

 μ_{VBF} < 96 (< 145 expected)

Stockholm University, ATLAS Experiment.

EFT Lagrangian's

$$\begin{split} \Delta \mathcal{L}_{\text{Warsaw}} &= \frac{C_{H,\square}}{\Lambda^2} (\phi^{\dagger} \phi) \square (\phi^{\dagger} \phi) + \frac{C_{HD}}{\Lambda^2} (\phi^{\dagger} D_{\mu} \phi)^* (\phi^{\dagger} D^{\mu} \phi) + \frac{C_H}{\Lambda^2} (\phi^{\dagger} \phi)^3 \\ &+ \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \tilde{\phi} t_R + h.c. \right) + \frac{C_{HG}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{\mu\nu,a} \\ &+ \frac{C_{uG}}{\Lambda^2} (\bar{q}_L \sigma^{\mu\nu} T^a G^a_{\mu\nu} \tilde{\phi} t_R + h.c.) \,. \end{split}$$

$$\Delta \mathcal{L}_{\text{HEFT}} = -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \bar{t} t - c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a,\mu\nu} .$$

Stockholm University, ATLAS Experiment.

Additional EFT information

Benchmark	c_{hhh}	c_{tth}	c_{ggh}	c_{gghh}	c_{tthh}
\mathbf{SM}	1	1	0	0	0
1	5.11	1.10	0	0	0
2	6.84	1.03	-1/3	0	1/6
3	2.21	1.05	1/2	1/2	-1/3
4	2.79	0.90	-1/3	-1/2	-1/6
5	3.95	1.17	1/6	-1/2	-1/3
6	-0.68	0.90	1/2	0.25	-1/6
7	-0.10	0.94	1/6	-1/6	1

Ref: arXiv:2304.01968

HEFT shape BM points

represent different $m_{\rm hh}$ shapes

Signal reweighting

SMEFT and HEFT signal is parametrized as a function of $m_{\rm hh}$

Stockholm University, ATLAS Experiment.

SMEFT truncation scheme

$$\left|\mathcal{M}_{\mathsf{SMEFT}}\right|^{2} = \left|\mathcal{M}_{\mathsf{SM}}\right|^{2} + \underbrace{\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} 2\operatorname{Re}\left(\mathcal{M}_{i}^{(6)}\mathcal{M}_{\mathsf{SM}}^{*}\right)}_{\text{linear model}} + \underbrace{\sum_{i} \frac{\left(c_{i}^{(6)}\right)^{2}}{\Lambda^{4}} \left|\mathcal{M}_{i}^{(6)}\right|^{2}}_{\text{quadratic terms}} + \underbrace{\sum_{i < j} \frac{c_{i}^{(6)}c_{j}^{(6)}}{\Lambda^{4}} 2\operatorname{Re}\left(\mathcal{M}_{i}^{(6)}\mathcal{M}_{j}^{(6)*}\right)}_{\text{cross terms}} + \dots$$

Stockholm University, ATLAS Experiment.

$HH \rightarrow b\overline{b}b\overline{b}$: EFT limits

Parameter	Expected Constraint		Observed Constrain	
	Lower	Upper	Lower	Upper
c _H	-20	11	-22	11
c_{HG}	-0.056	0.049	-0.067	0.060
$c_{H\square}$	-9.3	13.9	-8.9	14.5
c_{tH}	-10.0	6.4	-10.7	6.2
c_{tG}	-0.97	0.94	-1.12	1.15

HEFT observed (expected limits):

 c_{ggHH} : [-0.36, 0.78]([-0.42, 0.75])

 c_{ttHH} : [-0.55, 0.51]([-0.46, 0.40])

Stockholm University, ATLAS Experiment.

Sensitivity of di-Higgs channels

Upper limits on *HH* signal strength at 95% CL for the different *HH* channels. Ref: Phys. Lett. B 843 (2023) 137745

Cross section limits on a BSM scalar X from the different HH channels. Ref: ATLAS-CONF-2021-052

Stockholm University, ATLAS Experiment.