

Higgs and Light Quark Studies at the ILC

Higgs Hunting 2023 13/09/2023

Yuichi Okugawa*, Francois Richard, Adrian Irles, Roman Poeschl

On behalf of IDT-WG3

Yuichi Okugawa - Higgs and Light Quarks @ ILC

International Linear Collider

e+ bunch

compressor

- e⁺e⁻ linear collider .
- Well defined initial state, best suited for precision measurements aimed for BSM searches. .
- Model independent profiling of Higgs boson. .
- Operates at √s = 0.1 1 TeV .
- Enables the polarization of electron (±80%) and positron (±30%) beams.

Damping Rings

IR & detectors

Université de Paris

Overview

Laboratoire de Physique des 2 Infinis

Physics at the International Linear Collider

- One of the primary objectives at the ILC is Higgs production. (*Higgs Factory*)
- Important thresholds
 - ZH Higgs Strahlung ($\sqrt{s} = 250 \text{ GeV}$)
 - ZHH, tHH production ($\sqrt{s} = 500 \text{ GeV}$)
- Both **left- and right-handed** electrons and positrons beam polarization will be used to measure the cross section.
- Higgs Couplings at or well better that <u>1% level</u> in global EFT fits

Overview

Chrs

Physics Beyond Standard Model

- **Z-pole** experiments at **LEP/SLC**
 - \rightarrow Unable to access <u>Z/y interferences</u>
- Measurements of coupling between Z and fermion pair can be used as an observable to exploit BSM physics.
 - E.g. Gauge-Higgs Unification (<u>1811.07877</u>)
- Large angular acceptance, quark tagging and charge measurements facilitate the precise measurement of the coupling (compared to LEP/SLC)

International Large Detector

cnrs

International Large Detector (ILD)

- Multi-purpose 4π detector designed for the ILC.
- Composed of multiple sub-detectors:
 - Vertex Detector (VTX)
 - b, c-tagging
 - Time Projection Chamber (TPC)
 - dE/dx measurements
 - Electromagnetic Calorimeter (ECAL)
 - Hadronic Calorimeter (HCAL)
 - Muon Yoke
- Optimized for the application of Particle Flow Algorithm (PFA)

Fermion Pair Production

D'ORSAY

cnrs

Di-fermion production

- $e^+e^- \rightarrow qq$ 0
- CME 250 GeV. Ο
- Int. Lumi. 4300 fb⁻¹ 0
- **Differential Cross Section**
 - Couplings can be extracted from helicity amplitudes 0 included within the Differential Cross section

$$\frac{d\sigma}{d\cos\theta} = S(1+\cos^2\theta) + A\cos\theta$$

Extracted via forward-backward asymmetry. (AFB) 0

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

cnrs

FACULTÉ

D'ORSAY

DES SCIENCES

QQbar Production

Laboratoire de Physique des 2 Infinis

- **Particle Identification** plays a key role in precise cross section measurement.
- Mis-identification of particles will result in mis-identification of charge, which will be the source of <u>migration</u> and <u>mis-measurements</u>.
- Each process produces jets with unique characteristics:
 - **bb**: b-jets with high b-tag, based on various jet and vertex parameters. Mostly from SV.
 - cc: c-jets with high c-tag.
 - **ss**: Jets with kaons which carry predominant energy and momentum.
 - **uu,dd**: Jet with mixture of pions and kaons.

Taken from Slide 5 of Tomohiko Tanabe's 2020/11/24 presentation.

M.Basso 2021

Particle Identification

Ŵ Université de Paris

Kaon

Pion

Proton

Muon

Electron

dE/dx Particle Identification

- TPC provides information on average dE/dx values for each track.
- Bethe-Bloch formula tells each particle type has unique dE/dx vs p • function.

Leading PFO

- uu & dd hadronize into pions or kaons.
- Those hadrons will possess high momentum among jet constituents
- The PFO with the highest momentum in a jet is called the Leading PFO (LPFO)

Heavy Quark Polar Angles

bb result (<u>2306.11413</u>)

- The plot shows the polar angle distributions for different beam polarization
 - Top: (e-,e+) = (-0.8, +0.3)
 - Bottom: (e-,e+) = (+0.8, -0.3)
- Data is shown for the cases before and after the acceptance correction, due to the detector coverage.
- Parton level curve (green) has excellent agreement with the reconstructed distribution (blue)
- Fit is restricted to the $|\cos\theta| < 0.8$ region

Recent tt (<u>1505.06020</u>) and cc (<u>2306.11413</u>) analysis also showed results with great agreement with the parton level.

FACULTÉ

universite

DES SCIENCES

Ŵ

Université de Paris

FACULTÉ

D'ORSAY

uu & dd distribution

- The plot shows the polar angle distributions at the parton level for different beam polarization
 - Top: $(e_{-},e_{+}) = (-1.0, +1.0)$
 - Bottom: $(e_{-},e_{+}) = (+1.0, -1.0)$
- The uu and dd creates interference between the two processes which makes it difficult to separate from one another.
- The recent result has shown that the reconstruction of uu and dd process can be achieved with high precision
 - The result is currently being scrutinized by the ILD group for the quality check.

Electroweak Form Factors and Couplings

EW coupling and form factor precision

- Uncertainties for the couplings at e⁺e[−] → bb are presented.
- All couplings are an order of magnitude better than at LEP.
- Only **polarized beam** and **well defined initial states** can realize the precision measurements of the couplings.
 - Full disengagement of the helicity structure

cnrs

FACULTÉ

D'ORSAY

UNIVERSITE

DES SCIENCES

W

Université de Paris

Mass Reach for New Vector Bosons (Z')

Z' discovery reach

- SUSY expects supersymmetry preserving parameter µ naively in the order of Planck scale, while phenomenology requires it to be weak scale.
- U'(1) breaking allows MSSM parameter range to be extended
- Appearance of M_z['] is expected in TeV scale if supersymmetry scale is there.
- e⁺e⁻ → ff can be used since the s-channel resonance could affect the cross sections.

Addition of guarks provides improvements to the limit.

 $\chi/\psi/\eta$ appearing in GUT with coupling to the SM Z.

FACULTÉ DES SCIENCES

universite

Ŵ

Université de Paris

Summary

- ◆ e⁺e⁻ → qq analysis aimed to measure the EW couplings between Z boson and fermion pairs
 - ➤ Useful to probe SM/BSM, re-evaluation of LEP/SLC results etc.
 - BSM theories can lead this observable to Higgs coupling measurement (e.g. GHU model)
 Such indirect search requires precision in the original EW coupling as well.
- The high precision measurement is necessary for our analysis
 - > ILC: Beam polarization, clean physical signatures,
 - > ILD: Vertex detector, TPC
- Particle Identification is the KEY
 - > Flavor tag & dE/dx measurements provides efficient and pure identification
- Precision measurements achieve for the coupling measurements surpasses the analysis at the LHC.
 - Systematic & Statistical uncertainty of <u>0.1% level</u>.
- Quark pair production can probe the Z' mass, which can lead to indirect searches for the Higgs coupling.

ces 🔱 Université de Paris

Backup

Yuichi Okugawa - Higgs and Light Quarks @ ILC

Time Scale of Future Projects

FACULTÉ

D'ORSAY

DES SCIENCES

Snowmass EF-Vision (L. Reina)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$	Start Date	
			e^-/e^+	ab^{-1} /IP	Const.	Physics
HL-LHC	pp	14 TeV		3		2027
ILC & C^3	ee	250 GeV	$\pm 80/\pm 30$	2	2028	2038
		350 GeV	$\pm 80 / \pm 30$	0.2		
		500 GeV	$\pm 80/\pm 30$	4		
		1 TeV	$\pm 80/\pm 20$	8		
CLIC	ee	380 GeV	$\pm 80/0$	1	2041	2048
CEPC	ee	M_Z		50	2026	2035
		$2M_W$		3		
		240 GeV		10		
		360 GeV		0.5		
FCC-ee	ee	M_Z		75	2033	2048
		$2M_W$		5		
		240 GeV		2.5		
		$2 M_{top}$		0.8		
μ -collider	$\mu\mu$	125 GeV		0.02		

- International roadmaps consider construction of a linear collider towards the end of this decade
- We may seek to combine the best of all (linear) worlds into a linear facility
 - Avoids entangling of a electron-positron collider and a hadron machine
- It would be the parallel running of a TeV hadron machine and a electron positron collider at the TeV scale that "maximises scientific output "

Higgs Production at ILC

two important thresholds: $\sqrt{s} \sim 250$ GeV for ZH, ~500 GeV for ZHH and ttH

Gauge-Higgs Unification

- In the Gauge-Higgs Unification (GHU) model, the Higgs boson is considered as part of the extra-dimensional component of gauge potentials, represented by the Aharonov-Bohm phase θ_µ.
- The GHU model also features a Z' boson with a large coupling to the right-handed components of fermions.
- When θ_{H} is known, it determines the couplings of the Z' boson to fermions and the Higgs boson.

$$rac{g_{HWW}^{_{GHU}}}{g_{HWW}^{_{SM}}}, \ rac{g_{HZZ}^{_{GHU}}}{g_{HZZ}^{_{SM}}}, \ rac{y_{far{f}}^{_{GHU}}}{y_{far{f}}^{_{SM}}}\simeq\cos heta_H$$

Table 2: Couplings of neutral vector bosons (Z' bosons) to fermions in unit of $g_w = e/\sin\theta_W$ for $\theta_H = 0.115$. Corresponding Z-boson coupling in the SM are $(g_{Z\nu}^L, g_{Z\nu}^R) = (0.57027, 0), (g_{Ze}^L, g_{Ze}^R) = (-0.30651, 0.26376), (g_{Zu}^L, g_{Zu}^R) = (0.39443, -0.17584)$ and $(g_{Zd}^L, g_{Zd}^R) = (-0.48235, 0.08792).$

f	g_{Zf}^L	g^R_{Zf}	$g^L_{Z^{(1)}f}$	$g^R_{Z^{(1)}f}$	$g^L_{Z^{(1)}_R}$	$g^R_{Z^{(1)}_R f}$	$g^L_{\gamma^{(1)}f}$	$g^R_{\gamma^{(1)}f}$
ν	0.57041	0	-0.1968	0	0	0	0	0
ν_{j}	0.57041	0	-0.1968	0	0	0	0	0
ν	- 0.57041	0	-0.1967	0	0	0	0	0
e	-0.30659	0.26392	0.1058	1.0924	0	-1.501	0.1667	-1.983
μ	-0.30659	0.26391	0.1058	1.0261	0	-1.420	0.1667	-1.863
τ	-0.30658	0.26391	0.1057	0.9732	0	-1.354	0.1666	-1.767
u	0.39453	-0.17594	-0.1361	-0.7152	0	0.9846	-0.1111	1.2983
C	0.39453	-0.17594	-0.1361	-0.6631	0	0.9205	-0.1111	1.2036
t	0.39339	-0.17712	0.5068	-0.4764	1.0314	0.6899	0.4158	0.8666
a	-0.48247	0.087972	0.1665	0.3576	0	-0.4923	0.05557	-0.6491
s	-0.48247	0.087970	0.1664	0.3315	0	-0.4602	0.05556	-0.6018
b	-0.48254	0.087964	-0.6303	0.2387	1.0292	-0.3446	-0.2082	-0.4331

Ŵ

DES SCIENCES

ORSAY

universite

Université

de Paris

EFT Framework

cnrs

- Analysis in EFT Framework
- No clear winner among lepton colliders
- Polarisation at Linear Colliders compensates for higher integrated luminosity at Circular Machines

b,**c**-quark Results

D'ORSAY

Université de Paris

C-Quark Pair Production

- High efficient flavour tagging for c-guarks expected at future colliders
- Charge measurement
 - **Primary method**: identification of Kaons produced D-meson decays \rightarrow K-٠ method (requires PID)
 - Secondary method: reconstruction of charged mesons → VTX-method .
- PID is mandatory to reach competitive accuracies

B-Quark Pair Production

- High efficient flavour tagging for b-quarks expected at future colliders
- Charge measurement
 - **Primary method**: Reconstruction of charged mesons → VTX-method ٠
 - Secondary method: Identification of Kaons produced B-hadron decays → ٠ K-method (requires PID)

Background rate

 10^{-3}

10

0

Figure 9: c and b background rate vs c and b tag rate (left) and reconstructed b and c polar angle for $e_I^- e_P^+$ polarization (right) [7]

Top Quark Result

FACULTÉ

D'ORSAY

T-Quark Pair Production

- Massive quark like top is focused with $\sqrt{s} = 500$ GeV for pair production ٠
- Top guark charges are identified by using vertex charge, kaon charge and ٠ isolated lepton charge (in case of semi-leptonic and full-leptonic)
- One charge originated from one top is compared to the other charge coming ٠ from another top to see the consistency in two charges.

	Final States	# of jets	B.R.
Full Leptonic	$t\bar{t} \rightarrow (b\ell\bar{\nu})(\bar{b}\bar{\ell}\nu)$	2 jets + 2 ℓ	10.5%
Semi Leptonic	$t\bar{t} \rightarrow (b\ell\bar{\nu})(\bar{b}q\bar{q}')$	4 jets + 1 ℓ	43.8%
Full Hadronic	$t\bar{t} ightarrow (bq\bar{q}')(\bar{b}q\bar{q}')$	6 jets	45.7%