Search for extra Higgs bosons in same sign top-quark pair + jets final state

- **<u>Ting-Hsiang Hsu</u>** (National Taiwan University)
 - On behalf of the CMS collaboration
 - **Higgs Hunting Conference 2023** Sep 11 2023

Introduction to Extra Higgs Bosons

- Standard model still has several unsolved puzzles i.e. (anti)matter imbalance, g-2 muon anomaly etc.
- Several models introduce an extended Higgs sector i.e. supersymmetry (SUSY), Two-Higgs-Doublet Model (2HDM) in different variations etc.
- The second Higgs doublet in a 2HDM-like model introduces 5 scalar bosons
 - Charged scalar: H^{\pm}
 - Neutral scalar: H, h
 - Neutral pseudoscalar: A
- Many searches have been performed for extra Higgs Bosons

EPS-HEP Conference 2023

- Glashow-Weinberg condition is usually imposed in 2HDM to avoid flavor changing neutral currents (FCNC).
- At the alignment limit, in a 2HDM without Glashow-Weinberg condition (type-III 2HDM / g2HDM), FCNC of 125 GeV Higgs boson are suppressed but not for exotic Higgs.
 - Exotic Higgs in subTeV level and O(1) extra Yukawa couplings are not yet excluded.

 $= \sqrt{2m_i\delta_{ii}}/$

• Muon g-2 anomaly and baryogenesis can be explained by such models.

 $q_i q_j h$ coupling (125 GeV Higgs) $\propto -y_{ij} \sin_{\gamma} + \rho_{ij} \cos_{\gamma}$ $q_i q_j H$ coupling (exotic Higgs) $\propto y_{ij} \cos_{\gamma} + \rho_{ij} \sin_{\gamma}$ Alignment limit : $cos_{\gamma} \rightarrow 0$

FCNC of exotic Higgs sector provides chance to observe/ exclude **subTeV** exotic Higgs and **O(1)** extra Yukawa couplings

FCNC in 2HDM

Target Process

Target FCNC process

We test different mass $m_{H/A}$ and coupling strength ρ_{tu} & ρ_{tc} assumptions

CMS-PAS-TOP-22-010

Extra Yukawa Coupling

- Probe extra Yukawa coupling involving top quark (ansatz like $\rho_{qq'} \propto \sqrt{m_q m_{q'}}$)
- Probe ρ_{tu} & ρ_{tc} through $tt\bar{u}$ & $tt\bar{c}$ processes separately
- Probe range: $0.1 \le \rho_{tq} \le 1.0$ (assume all other extra Yukawa couplings to be 0)

Target FCNC process

We test different mass $m_{H/A}$ and coupling strength ρ_{tu} & ρ_{tc} assumptions

CMS-PAS-TOP-22-010

Exotic Higgs Bosons

Two scenarios are considered

H and A non-interference

- Only consider A or H
- Probe range: 200 $GeV \le m_{A/H} \le 1 TeV$

H and A interference

- Take $m_A m_H = 50 \ GeV$ for demo
- Probe range: 250 $GeV \le m_A \le 1 TeV$

Object & Event Selection

Signal Topology

Two same sign leptons At least three jets Missing transverse momentum

Signal cross section

Depending on the coupling value, mass and the H-A interference assumption

ttu processes range from $\sim 1 \times 10^{-4}$ to $\sim 7 \times 10^{-1} pb$

ttc processes range from $\sim 5 \times 10^{-6}$ to $\sim 7 \times 10^{-2} pb$

CMS-PAS-TOP-22-010

Analysis Technique

DeepJet Flavor Tagging

 Neural network utilizes global variables, charge jets to perform flavor tagging.

• Neural network utilizes global variables, charged/neutral particle and secondary vertex features in the

Analysis Technique

- Boosted Decision Tree
 - Input: Jet flavor info, lepton/jet kinematic, MET, HT, and object pair kinematic information
 - <u>BDT > -0.6 cut</u> is imposed in order to improve the stability of the fit and the corresponding fit uncertainties

	Input features of the BDT	
	$p_{\rm T}(\ell_i)$: i=1,2; $H_{\rm T}$, $p_{\rm T}^{\rm miss}$	
	$CvsB(j_i), CvsL(j_i): i=1,2,3$	
$m_{\ell\ell}, m_{\ell\ell}(j_i): i=1,2,3$		
ΔR	$R(j_n, j_m), m(j_n, j_m): 1 \le n < m \le 3$	
ΔR	$R(j_n, l_m), m(j_n, l_m): n=1,2,3; m=1,2$	

Uncertainties

- Fit is performed using BDT distribution.
- Profiled uncertainty is used for analysis.
- Main uncertainties come from
 - Statistical unc. from the fit
 - Flavor tagging
 - Nonprompt background estimation
 - ttW cross section

Post-fit uncertainty sources with respect to the total uncert (given in percentages)		
	$\rho_{tu} = 0.4$	
	$m_{\rm A} = 200 {\rm GeV} (1 {\rm TeV})$	$m_{\rm A} = 250 {\rm GeV}$
	Without interference	With interfer
Jet flavor identification	16 (55)	26 (46)
Nonprompt leptons	39 (13)	43 (13)
ttW background	33 (28)	35 (30)
Total signal modeling	20 (16)	7 (19)
Total background modeling	9 67 (56)	65 (59)
Total experimental	44 (56)	55 (50)
Statistical	57 (57)	52 (61)
	$ ho_{ m tc}$ =	= 0.4
Jet flavor identification	18 (47)	24 (48)
Nonprompt leptons	35 (14)	31 (14)
ttW background	32 (32)	34 (31)
Total signal modeling	14 (12)	16 (13)
Total background modeling	66 (62)	64 (61)
Total experimental	44 (50)	46 (52)
Statistical	61 (61)	60 (59)

- Probe phase space with O(1) extra Yukawa couplings and sub TeV exotic Higgs mass
- Results are consistent with standard model predictions.

Observed (expected) lower limits on $m_A(m_H)$ at 95% CL.

	Observed (expected) mass limit [GeV]		
	Without interference	With interference	Wi
$ ho_{ m tu}$	$m_{\rm A}$ or $m_{\rm H}$	$m_{\rm A}$	
0.1	- (-)	- (-)	
0.4	900 (900)	1000 (1000)	
1.0	1000 (1000)	1000 (1000)	
$ ho_{ m tc}$	$m_{\rm A}$ or $m_{\rm H}$	$m_{\rm A}$	
0.1	- (-)	- (-)	
0.4	- (-)	300 (350)	
1.0	700 (600)	800 (550)	

Results

Summary

- Good agreement with standard model predictions.
- considering H/A interference.

• Search for top quark related flavor changing neutral current in extended Higgs sector using full run2 CMS data

• Exclude certain phase space of O(1) extra Yukawa couplings and sub TeV exotic Higgs mass with/without

Back up

Many researches have been performed regarding to extra Higgs Bosons

 $H/A \rightarrow tt$: Eur. Phys. J. C 77 (2017) 578 $H/A \rightarrow bb$: JHEP 08 (2018) 113 $H/A \rightarrow \tau \tau$: JHEP 09 (2018) 007 $H/A \rightarrow \mu\mu$: Phys. Lett. B 798 (2019) $A \rightarrow Zh \rightarrow (ll, \nu\nu)bb$: Eur. Phys. J. C 79 (2019) $H/A \rightarrow Z(ll)A/H(bb)$: JHEP 03 (2020) 055 $H \rightarrow WW$: JHEP 03 (2020) 034 $X \rightarrow YH \rightarrow b\bar{b}b\bar{b}$: Phys. Lett. B 842 (2023) 137392 $\phi \rightarrow \tau \tau$: JHEP 07 (2023) 073

FCNC in extended Higgs sector still remains to be studied.

Previous CMS results

 $H \rightarrow AA \rightarrow 4\gamma$: Accepted pub. In Phys. Rev. Lett. $H \rightarrow e\mu$: Submitted to Phys. Rev. D $H \rightarrow \gamma \gamma$: CMS-PAS-HIG-20-002 $\phi \rightarrow ll$: CMS-PAS-EXO-21-018 $H^{\pm} \rightarrow \tau_h \nu$: JHEP 2019:142 $H^{\pm} \rightarrow Wa$: Phys. Rev. Lett. 123 131802 (2019) $H^{\pm} \rightarrow tb$: JHEP 2020:096, JHEP 2020:126 $H^{\pm} \rightarrow cs, cb$: Phys. Rev. D 102, 072001 (2020) $H^{\pm} \rightarrow H(\tau \tau)W$: Accepted pub. In JHEP

Analysis Technique - DeepJet

DeepJet Flavor Tagging

Jets to perform flavor tagging.

arXiv:2008.10519

• Neural network utilizing global variables, charged/neutral particle and secondary vertex features in the

BDT distribution

- Boosted Decision Tree
 - Input: Jet flavor info, lepton/jet kinematic, MET, HT, and object pair kinematic information
 - <u>BDT > -0.6 cut</u> is imposed in order to improve the stability of the fit and the corresponding fit

Results

Results - 2D phase space

CMS-PAS-TOP-22-010

Background Category

Category	Samples
TT	TTTo2L
VV	WW(OS) WZ(QCD)
VBS	WpWpJJ(EWK+QCD) WLLjj ZZJJTo4L
ttH	ttH
ttW	ttWtoLnu ttWtoQQ

Category	Samples
Others	tW & tbarW DY ttZZ ttWW ttWZ ttWH ttZH ttZ(II + qq) tZq tttj tttW tttt ZZZ WZZ WVZ WWZ WWW

