



# Search for Higgs boson decays to a pair of pseudoscalars in CMS

Stephanie Kwan on behalf of the CMS Collaboration Princeton University, USA

Higgs Hunting 2023: 13th workshop of the Higgs Hunting series Orsay-Paris, France 12 September 2023







# Introduction

Direct searches for exotic Higgs decays to light states are an exciting potential window into BSM physics

2HDM+S (2 Higgs doublets models extended with one scalar) supports a large variety of Higgs decay phenomenologies:

- e.g.  $H \rightarrow aa \rightarrow X\bar{X}Y\bar{Y}$  (pseudoscalar *a*, and *X*, *Y* are SM fermions and gauge bosons)
- Currently searching for four types of 2HDM+S that prevent large flavourchanging neutral currents
- The branching ratios  $B(H \rightarrow aa \rightarrow X\bar{X}Y\bar{Y})$  depend on:
  - the model type (type I, II, III, or IV)
  - $m_a$  (mass of the pseudoscalar)
  - $\tan \beta$  (ratio of the VEVs of the two doublets)

This talk: latest full Run-2 results for Higgs decays to pairs of pseudoscalars at CMS





# NIVERSITY





# Run-1 and Run-2 $H \rightarrow aa$ results at CMS



From Run-1 to Run-2, large improvement in limits on  $B(H \rightarrow aa)$ 

- e.g. almost x10 improvement in 2HDM+S Type I limits, for  $m_a \in (5, 62)$  GeV
- Limits have improved from not just larger integrated luminosity, but also improved analysis techniques

Search for Higgs decays to pseudoscalars at CMS (12.09.2023)





Full summary plots: <a href="https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2">https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2</a>

Stephanie Kwan, Higgs Hunting 2023







## Direct searches for $H \rightarrow aa$ at CMS

Final states searched for in Run-1, with Run-2 analyses ongoing:

 $H \rightarrow aa \rightarrow 4\tau (\text{JHEP 01} (2016) 079)$ 

 $H \rightarrow aa \rightarrow 4\mu$  (Phys. Lett. B 796 (2019) 131)

 $H \rightarrow aa \rightarrow 2\tau 2\mu$ : boosted (JHEP 08 (2020) 139) resolved (JHEP 11 (2018) 018)

Final states with full Run-2 results- focus of this talk:

 $H \rightarrow aa \rightarrow 4\gamma$ : boosted (Phys. Rev. Lett. 131 (2023)) resolved (JHEP 07 (2023) 148)  $H \rightarrow aa \rightarrow 2b2\mu$ combined final states with

 $H \rightarrow aa \rightarrow 2b2\tau$ 

improved limits:  $H \rightarrow aa \rightarrow llbb$ 





https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2

Stephanie Kwan, Higgs Hunting 2023







# $H \rightarrow aa \rightarrow 4\gamma$ (boosted) (Phys. Rev. Lett. 131 (2023))

- Diphoton decays are reconstructed as two photon-like objects labeled  $\Gamma_{1,2}$
- Novel end-to-end deep learning method for reconstructing highly boosted photons
- Final 2D fit to distribution of invariant masses  $m_{\Gamma_1}$  and  $m_{\Gamma_2}$ ;
- Upper limit on  $B(H \rightarrow aa \rightarrow 4\gamma)$ :  $(0.9 3.3) \times 10^{-3}$  at 95% CL, for  $m_a \in (0.1, 1.2)$  GeV, assuming SM Higgs production

Current best constraints in this pseudoscalar mass range



Search for Higgs decays to pseudoscalars at CMS (12.09.2023)



Search for very low pseudoscalar masses  $m_a \in (0.1, 1.2)$  GeV, with boosted diphotons (first search in this topology!)

# INIVERSITY





# $H \rightarrow aa \rightarrow 4\gamma$ (resolved) (JHEP 2307 (2023) 148)

Search for pseudoscalar masses  $m_a \in (15, 62)$  GeV, with four well-isolated photons

- Primary interaction vertex is identified with a BDT (one per year)
- Dedicated 4-photon BDT event classifier using ID and kinematic info of the photons and a candidates

GeV

Events /

- Final fit of  $m_{\gamma\gamma\gamma\gamma}$  to 125 GeV resonance
- Observed limits  $B(H \rightarrow aa \rightarrow 4\gamma)$ :  $1.5 \times 10^{-5}$  at  $m_a = 15$  GeV,  $0.5 \times 10^{-5}$  at  $m_a = 62$  GeV (assuming SM Higgs production)

Low  $a \rightarrow \gamma \gamma$  branching ratio (~10<sup>-4</sup>), but  $4\gamma$ channel has low Standard Model backgrounds and good photon reconstruction at CMS







# $H \rightarrow aa \rightarrow 2\mu 2b$ (CMS-PAS-HIG-22-007)

Search for  $m_a \in (15, 60)$  GeV: clean signature with a precise di-muon mass resolution and large BR to bb

- Define two variables  $\chi_{bb}$ ,  $\chi_{\mu\mu}$  to exploit  $m_{\mu\mu} = m_{bb}$  and  $m_{\mu\mu bb} = 125$  GeV, and de-correlate into one variable  $\chi_d$
- Cut on  $\chi^2_d$ , and then further categorize events based on jet properties
- Unbinned maximum likelihood fit to  $m_{\mu\mu}$ , using parametric signal and background models
- Observed limit  $B(H \rightarrow aa \rightarrow 2\mu 2b) < (0.17 3.3) \times 10^{-4}$  for this mass range Most stringent observed upper limit to date in  $2\mu 2b$  channel; slightly better than Run-2 ATLAS results





Search for Higgs decays to pseudoscalars at CMS (12.09.2023)











# $H \rightarrow aa \rightarrow 2\tau 2b$ (CMS-PAS-HIG-22-007)

Search for  $m_a \in (12, 60)$  GeV, large BR to bb and  $\tau\tau$ . Three  $\tau\tau$  final states considered:  $e\mu$ ,  $\mu\tau_h$ ,  $e\tau_h$ 

- Improved object selection: deep tau ID, deepJet b-tagging
- Full  $m_{\tau\tau}$  instead of visible-only component  $m_{\tau\tau}^{vis}$  (SVFit algorithm)
- $Z \rightarrow \tau \tau$  background estimation using Embedded samples (hybrid data/MC samples)
- DNN-based categorization: Events with exactly 1 b-tag jet and >1 b-tag jets are separated, and a DNN was trained for each case (three  $\tau\tau$  final states \* (1 or >1 b-tag jet)) = 6 distinct DNNs
- Maximum likelihood fit to  $m_{\tau\tau}$



Pre-fit DNN score ( $\mu \tau_h$  channel, 1 b-tag jet)

Search for Higgs decays to pseudoscalars at CMS (12.09.2023)





23%

23%





# Combination: $H \rightarrow aa \rightarrow \ell\ell bb$ (CMS-PAS-HIG-22-007)

Combination of  $2\mu 2b$  and  $2\tau 2b$  possible since event selection is mutually exclusive

•  $m_{\mu\mu}$  and  $m_{\tau\tau}$  profiles are compared to data in a combined fit for  $m_a \in (12, 60)$  GeV

Combination yields more stringent limits on  $B(H \to aa)$  and  $B(H \to aa \to \ell \ell bb)$  than the individual analyses

•  $B(H \rightarrow aa)$  values above 23% are excluded at 95% CL for most Type II 2HDM+S models, excluded at 7% for Type III  $\tan \beta = 2.0$ , and excluded at 15% for Type IV  $\tan \beta = 0.5$ 



Search for Higgs decays to pseudoscalars at CMS (12.09.2023)





Stephanie Kwan, Higgs Hunting 2023





Full Run-2 results for  $H \rightarrow aa \rightarrow 4\gamma$ ,  $2\mu 2b$ , and  $2\tau 2b$  shown, with more to come

- Improved sensitivity from Run-1 with novel analysis techniques (ML, better modeling of signal/background, ...)
- Combination of  $bb\tau\tau$  and  $bb\mu\mu$  yields stronger limits on BRs than the individual channels
- Direct searches benefit from increase in luminosity; exciting times ahead with ongoing Run-3

Despite no observations of significant excess over SM predictions for  $H \rightarrow aa$  to date, many physics scenarios remain to be explored:

- Decays to pseudoscalars with different masses:  $H \rightarrow a_1 a_2 (m_{a_1} \neq m_{a_2})$
- Other boosted reconstructions for low pseudoscalar masses

### Thank you for your time!

Search for Higgs decays to pseudoscalars at CMS (12.09.2023)

### Summary





Summary2HDMSRun2

