

Higgs triplets at the LHC

Higgs Hunting 2023 September 12th - Paris

Guglielmo Coloretti University of Zurich and Paul Scherrer Institut

Introduction

Motivations:

- *W*-mass (3.7 σ tension)
- Narrow resonances $(\gamma\gamma, WW, \tau\tau, Z + bb)$ at 95 and 152 GeV (3.8 σ and 4.9 σ) (2306.17209)
- Multi-lepton anomalies (2109.06065): deviations from SM in processes with *W*-like signature
 - 1. $t\bar{t}W$, 4t, Wh, WWW
 - 2. Hints for low mass *WW* resonances ($\geq 2\sigma$)
 - 3. Tension in $t\bar{t}$ differential distributions ($\geq 5.8\sigma$)

Real $SU(2)_L$ scalar triplet

$$\Delta = \frac{1}{2} \begin{pmatrix} \delta^0 & \sqrt{2}\delta^+ \\ \sqrt{2}\delta^- & -\delta^0 \end{pmatrix}$$

New physical fields :

- CP-even scalar H
- Charged scalar H^{\pm}

Parameters :

- α : mixing angle with SM-higgs
- v_Δ : vev of δ^0

WW analysis

- No dedicated BSM search for a resonance (*H*) decaying to WW (i.e. $gg \rightarrow H \rightarrow WW$) with full luminosity and scanning down to 90 GeV for m_H
- CMS (2206.09466) and ATLAS (2207.00338) analyses available for SM Higgs (135 fb⁻¹)

- Re-cast CMS and ATLAS SM Higgs analyses to search **for new scalars**
- Simulation with MadGraph5 (Pythia8, Delphes3)

- ➢ 0-jet
 - Different flavour opposite sign lepton pair

Guglielmo Coloretti

WW results

2302.07276 (Coloretti, Crivellin, Bhattacharya, Mellado)

• Observed limit is weaker than expected over the whole mass range (**preference for BSM** $\geq 2\sigma$) in line with the $\gamma\gamma$ indications for resonances at **95 and 152 GeV**

Guglielmo Coloretti

$pp \rightarrow t\bar{t}$ differential distributions

- Several distributions analyzed for the lepton pair
- We focus on the invariant mass $m^{e\mu}$

"No model can describe all measured distributions within their uncertainties." ATLAS 2303.1534

Mismodelling of SM at the LHC or new physics effects?

The binning for low values of $m^{e\mu}$ is relatively thin. For the sake of visibility, we will display the data with equal size for all bins

Guglielmo Coloretti

NP in $pp \rightarrow t\bar{t}$ differential distribution

2308.07953 (Banik, Coloretti, Crivellin, Mellado)

- NP must have $t\bar{t}$ -like ($WWl\bar{l}$) signature
- Masses of S and S' fixed by the hints for
 152 and 95 GeV resonances (respectively)
- Mass of *H* large enough to produce *S* and *S*' on-shell (**no effects by varying** *m_H* between 250-320 GeV)

- 1. *H*(270):
 - $SU(2)_L$ doublet
- 2. *S*′(95):
 - $SU(2)_L$ real singlet
 - Mainly decaying to $b\overline{b}$
 - Could explain $\gamma\gamma$ signal

3. *S*(152):

- $SU(2)_L$ real triplet (Y = 0)
- Mainly decaying to WW
- Natural explanation of W mass anomaly if neutral component acquires a small vacuum expectation value $v_{\Delta} \approx O(1 \text{GeV})$

$pp \rightarrow t\bar{t}$: results

ATLAS generated $t\bar{t}$ samples with several different matrix element generators, parton shower, and fragmentation simulation

Since the differential distributions are **normalized to the total** cross section $\sigma(pp \rightarrow t\bar{t})$, $m^{e\mu}$ distribution is only sensitive to the shape of NP

ightarrow NP hypothesis is preferred over the SM by \geq 5.8 σ

Guglielmo Coloretti

Higgs Hunting - Paris '23

--- Average (SM)

$pp \rightarrow t\bar{t}$ and $S'(95) \rightarrow \gamma\gamma$

- Assumptions: S(152) is a triplet and S'(95) is a singlet in the decay chain $pp \rightarrow H \rightarrow S(152) S'(95) \rightarrow WWb\overline{b}$
- Red is preferred region
 from the *tt* differential distributions
- Blue is preferred region from the γγ signal strength at 95 GeV
- The regions nicely overlaps

Higgs Hunting - Paris '23

7

Triplet $H(95) \rightarrow \gamma \gamma$: results

2306.15722 (Ashanujjaman, Banik, Coloretti, Crivellin, Mellado, Mulaudzi)

Constraints:

- Br[$h \rightarrow \gamma \gamma / ZZ$]
- Perturbative unitarity
- Vacuum stability

Hints for 95 GeV scalar:

- $H \rightarrow \gamma \gamma$ (CMS and ATLAS)
- $Z + (H \rightarrow b\overline{b})$ (LEP)
- Wmass

Since effects in W mass are small, v_{Δ} are required to be small $v_{\Delta} \approx O(1 \text{GeV})$, thus a small mass splitting $m_{H^{\pm}} \approx m_{H} \approx 95 \text{ GeV}$

Guglielmo Coloretti

Triplet $H^{\pm}(95) \rightarrow \tau \nu$: stau searches

- Drell-Yan production $pp \rightarrow H^{\pm} \rightarrow \tau \nu$ has same signature as stau decays
- $\sigma(pp \rightarrow H^{\pm} \rightarrow \tau \nu)$ borderline with existent CMS and ATLAS stau searches limits

- Although $m_{H^{\pm}} \approx m_{H}$, the maximum mass splitting is $\approx 4(v_{\Delta}/v_{SM})^{2}$
- This opens the channel $H^{\pm} \rightarrow HW^*$ and reduces the branching ratios of $H^{\pm} \rightarrow \tau \nu$
- Alternative solution: Vector Like Quarks to enhance $H^{\pm} \rightarrow cs$

Guglielmo Coloretti

Conclusions

- Electro-weak scale NP poorly constrained by the LHC
- Several hints motivate existence of new scalars at 95 and 152 GeV
- Real $SU(2)_L$ scalar triplet can naturally explain W mass excess

- Triplet at 152 GeV
- > WW excess
- *tt* differential distribution anomaly with
 - $H \rightarrow S(152) S'(95) \rightarrow WWb\overline{b}$
- Resonant γγ signal (95 GeV) if
 S(152) is a triplet and S'(95)
 is a singlet
- Emergence of a model with multiple scalars in a singlet(95)doublet(125)-doublet(270)-triplet(150) pattern (work in progress...)

Thanks for your attention!

Back-up slides

Multi-lepton anomalies: summary

(2109.06065)

Final state	Characteristics	SM backgrounds	Significance
$\ell^+\ell^-$ + $(b-jets)^{51,54,55}$	$m_{\ell\ell} < 100 \text{GeV}, (1b, 2b)$	$t\bar{t},Wt$	$> 5\sigma$
$\ell^+\ell^-$ +(no jet) ^{50, 56}	$m_{\ell\ell} < 100{ m GeV}$	W^+W^-	$\approx 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell + b$ -jets ^{53, 57, 58}	Moderate H_T	$tar{t}W^{\pm},tar{t}tar{t}$	$> 3\sigma$
$\ell^{\pm}\ell^{\pm}, 3\ell, (\text{no } b\text{-jet})^{52, 59, 60}$	In association with h	$W^{\pm}h(125), WWW$	$\gtrsim 4\sigma$
$Z(\rightarrow \ell \ell)\ell$, (no <i>b</i> -jet) ^{51,61}	$p_{\mathrm{T}}^{\mathrm{Z}} < 100\mathrm{GeV}$	ZW^{\pm}	$> 3\sigma$

• Summary of all channels with multi-lepton anomalies

• ℓ being a muon or an electron

Guglielmo Coloretti

Back-up

95 and 152 excess: summary

 The p-values of the individual high mass channels as well as their combination, both including and excluding the μe signal

Guglielmo Coloretti

Back-up

SM WW searches: ATLAS 2207.00338

- ATLAS reports the postfit data
- Only SM contribution is rescaled by a factor of 1.21

Guglielmo Coloretti

Back-up

SM WW searches: CMS 2206.09466

CMS performs a simultaneous fit of SM+background

Guglielmo Coloretti

Back-up

Simulation

HEP tools: MadGraph5_aMC@NLO (Pythia8, Delphes)

Limitations of fast simulation

- SM-simulation VS ATLAS one
- Smearing and shifts
- Corrected for efficiency (energy dependence)
- Corrected for QCD NNLO effect in production cross section

Checks over SM-samples: ATLAS full-simulation VS MG5 fastsimulation

Guglielmo Coloretti

Back-up

Uncertainties

ATLAS

- ATLAS scaled SM theory prediction by 1.21
- Strong anti-correlations among the different background signals (including the SM Higgs)
- Mis-Id background is least correlated and the total uncertainty matches total one

→ Mis-Id uncertainty chosen as the total experimental systematic uncertainty

Theory uncertainty (systematic):
 7% uncertainty on the SM Higgs signal

CMS

 CMS uses a combined fit to signal and background to account for systematic uncertainties

 \rightarrow re-fit background (including SM signal) when including new physics

Theory uncertainty (systematic):
 7% uncertainty on the SM Higgs signal

Systematics uncertainties correlations included

Guglielmo Coloretti

Back-up

Drell-Yan production

- Drell-Yan production leading to the γγ excess (in addition to gluon fusion (GF) via mixing with the SM higgs)
- Br $[H o \gamma \gamma]$ sizable as a function of the mixing CP-even angle α and the mass splitting $H^{\pm} - H$
- Although H → γγ produced in association with H[±] → jets, the signal does not fall in the vector boson fusion (VBF) category (due to the angular distributions of the jets)

Guglielmo Coloretti

Back-up

Predictions for p_T of $H \rightarrow \gamma \gamma$

- *H* produced in association with H^{\pm} : $pp \rightarrow H^{\pm} (H \rightarrow \gamma \gamma)$
- p_T spectrum not gluon fusion (GF) – like: $pp \rightarrow H \rightarrow \gamma \gamma$
- p_T spectrum not VH like:

 $pp \rightarrow V (H \rightarrow \gamma \gamma)$

- Model built at NLO in QCD with Feynrules
- Signals generated at NLO in QCD via MadGraph5 with CMS cuts
- Shape of p_T of the photon pair with strong predictivity

Guglielmo Coloretti

Back-up

FCCC mediated by H^{\pm}

- Coupling of Δ to fermions happens only via mixing with the SM higgs doublet
- Couplings of H^{\pm} to fermions are proportional to $Sin(\epsilon) \approx \frac{v_{\Delta}}{\sqrt{v_{\Delta}^2 + v_{SM}^2}}$
 - with ϵ being the mixing angle among the charged component of the triplet and the SM charged Goldstone boson

• Since v_{Δ} is small (m_W only slightly enhanced), effects related to FCCC mediated by H^{\pm} are negligible

Guglielmo Coloretti

Back-up

Reduction of $Br[H^{\pm} \rightarrow \tau \nu]$

- Although $m_{H^{\pm}} \approx m_{H}$, opening of the channel $H^{\pm} \rightarrow HW^{*}$
- Reducing the decay rate $H^{\pm} \rightarrow \tau \nu$
- Alternative solution: Vector Like Quarks to enhance $H^{\pm} \rightarrow cs$

Guglielmo Coloretti

Back-up

 $tt: |\Delta \varphi|$

Back-up

 \rightarrow in average, NP hypothesis is preferred over the SM by 10.4 σ

Higgs Hunting - Paris '23

--- Average (SM)

Guglielmo Coloretti

$pp \rightarrow t\bar{t} : |\Delta \phi|, m^{e\mu}$ and combination

	$m^{e\mu}$			$\Delta \phi^{e\mu}$			$m^{e\mu} + \Delta \phi^{e\mu}$						
	$\chi^2_{ m SM}$	$\chi^2_{ m NP}$	$\sigma_{ m NP}$	Sig.	$\chi^2_{ m SM}$	$\chi^2_{ m NP}$	$\sigma_{ m NP}$	Sig.	$\chi^2_{ m SM}$	$\chi^2_{ m NP}$	$\sigma_{ m NP}$	Sig.	$m_S[{ m GeV}]$
Powheg+Pyhtia8	146	50	10pb	9.8σ	183	73	11pb	10.5σ	213	102	$9\mathrm{pb}$	10.5σ	143 - 156
aMC@NLO+Herwig7.1.3	31	13	$4\mathrm{pb}$	4.2σ	96	38	$8\mathrm{pb}$	7.6σ	102	68	$5\mathrm{pb}$	5.8σ	
aMC@NLO+Pythia8	89	14	$9\mathrm{pb}$	8.7σ	277	83	$15 \mathrm{pb}$	14.0σ	291	163	$10 \mathrm{pb}$	11.3σ	148-157
Powheg+Herwig7.1.3	138	32	$10 \mathrm{pb}$	10.3σ	245	93	$13 \mathrm{pb}$	12.3σ	261	126	$10 \mathrm{pb}$	11.6σ	149 - 156
Powheg+Pythia8 (rew)	40	12	$5\mathrm{pb}$	5.3σ	54	26	$6\mathrm{pb}$	5.3σ	69	35	$5\mathrm{pb}$	5.8σ	
Powheg+Herwig7.0.4	186	41	$12 \mathrm{pb}$	12.0σ	263	99	14pb	12.8σ	294	126	$12 \mathrm{pb}$	13.0σ	149-156
Average	93	23	8pb	8.4σ	172	63	11pb	10.4σ	182	88	9pb	9.6σ	143-157

Guglielmo Coloretti

Back-up