Measurement of high-momentum Higgs boson production in association with a vector boson in the qq bb final state with the ATLAS detector <u>ATLAS-CONF-2023-067</u>

> Higgs Hunting 2023 September 13

Andrea Sciandra on behalf of the ATLAS Collaboration

UC SANTA CRUZ

Motivation for Boosted All-Hadronic Higgs-Boson Searches

- Shifting interest from static to dynamic properties of the Higgs boson
 - All production modes contribute similarly towards $p_T^H \sim 1$ TeV
- Increased impact expected from new physics
 - Probe BSM, especially EFTs: effects enhanced by powers of E/Λ
- Main experimental challenges: flavour-tagging in boosted/busy environment, background

modelling, jet-tagging & resolution

[A. Sciandra | Boosted VH->qq bb with ATLAS | Higgs Hunting | Sep 13, 2023] 2

Boosted Inclusive & VH Semileptonic Results

- All-hadronic production of Higgs boson in *bb* decay channel
 - First ATLAS *p*_T^H-differential results in all-had phase space Phys. Rev. D 105, 092003
 - Inclusive in Higgs-boson production modes
 - Recent result by CMS focused on VBF <u>CMS-PAS-HIG-21-020</u>
- ATLAS boosted semilep VH(bb) Phys. Lett. B 816 (2021) 136204
 - Observed (expected) significance for p_TV >250 GeV: 2.1(2.7)σ
 - Signal events increase by a factor of two in all-hadronic channel

Exclusively probe VH

production mode in

qq bb decay mode

Data

H, p₊³ (μ=5.2)

3

 $\times 10^3$

7 **ATLAS**

 $\sqrt{s} = 13 \text{ TeV}, 136 \text{ fb}^{-1}$

6-SRL, 650 < p_ < 1000 GeV

Dedicated Techniques for Boosted Topologies

- Advancement of novel jet substructure techniques & background estimation methods enabled searches for *H*->bb in all-hadronic final states
 - Reduce & describe large irreducible multi-jet background
- <u>V-tagger</u> : tag jets likely coming from V-boson decay
 - Requirements on jet mass, two-prongness & number of tracks yielding a signal efficiency of 50%
- <u>Hbb tagger</u>: tag jets likely resulting from Higgs-boson decay to b-quark pair
 - Neural Network using track & vertex info associated to variable-radius track-jets
 - Fixed 60% H->bb efficiency used

[A. Sciandra | Boosted VH->qq bb with ATLAS | Higgs Hunting | Sep 13, 2023]

4

- Proton-proton collision data collected by ATLAS detector from 2015 to 2018
 - Integrated luminosity of **137 fb⁻¹** at 13 TeV
- Event selection:
 - Single large-R (R=1.0 anti-kt) jet triggers with

mass (M_J) and p_T thresholds

- At least two large-R jets $p_T > 200 \text{ GeV } \& |\eta| < 2$
 - *p*_T-leading : *p*_T > 450 & M_J > 50 GeV
 - Second p_{T} -leading $M_{J} > 40 \text{ GeV}$
- Events with isolated charged leptons are

rejected

- In region of interest (SR):
 - At least one of the two p_T -leading jets must pass

Hbb-tagger requirements

• If both, jet with larger mass is **Higgs**

candidate & is required to fulfill *p*_T > 250 GeV

- Other jet must satisfy **V-tagger** requirements
- Events are split according to Higgs-candidate p_T :

[250,450), [450,650), ≥650 GeV

- Dedicated *Hbb*-tagger
 calibration with independent
 boosted *Z*->bb events
 - Inverted V-tagger on recoil jet

Inclusive Signal & Background Composition

- In SR, *VH* production mechanism **dominates: ~85%**
 - *ttH* (8%), *ggF* (6%), *VBF* (1.4%)
- Background by far dominated by multi-jet production (90%); followed by:
 - *ttbar* (5%)
 - **V+jets** (3.6%)
 - VV (0.7%)
- Key to have full control of multi-jet background estimation
 - Two data-driven estimations in place

Analysis Strategy & Region Definitions

- Higgs-candidate jet mass fit (mJH) to extract signal in SR
 - Reconstructed combining calorimeter & tracking measurements
 - Corrected to account for **muons** from semileptonic *b*-hadron decays
- Control Region (**CR**):
 - Events fail Hbb-tagger requirements
 - **Derive** multi-jets background
- Three Validation Regions (VR):
 - Pass looser (80% eff) V-tagger, but fail one of three nominal (50% eff) requirements
 - Validate multi-jet background
 estimation method

Multi-Jet Background Estimation

- Multi-jet background modelled from CR with Transfer Factor (TF) dependent on candidate-jet p_T &
 - $\rho = \log(m_J^2/p_T^2)$:
 - $TF(p_T, \rho) = \sum_{k,l} \alpha_{kl} \rho^k p_T^l$, where α_{kl} are polynomial coefficients
- TF scales CR events to yield number of multi-jet events in SR
- Polynomial order determined via Fisher F-tests in data
 - First order in both *p*_T & *ρ* proves to be sufficient, without inducing significant spurious signal
- Alternate method: **BDT** exploiting kinematics of two leading jets to predict SR from CR
 - Consistent results between the two methods

Control Region - Post-Fit Plots

- Good desciption observed in VRs: no additional non-closure uncertainty necessary
- Significant constraining power from **CR**, shown in combined fit with SR
 - Great handle on description of non-resonant processes
- How are resonant contributions estimated?

Simulation-based Estimations

• Signal & smaller backgrounds (*ttbar*, *V*+jets, & *VV*

production) are modeled using simulation

- Modelling of *VH* production:
 - qq/qg production @NNLO QCD & NLO EW
 - Differential NLO EW corrections computed with

<u>HAWK</u>

- gg->ZH production @NLO+NLL QCD
- *ttbar*: generated with NLO accuracy
- **V+jets**: NLO QCD + EW predictions
- VV: (N)LO QCD accuracy up to three(one) additional partons

Uncertainties & Fit Setup

Three main sources of systematic uncertainties: data-driven multi-jet models, signal

theoretical predictions & experimental reconstruction

- Difference between TF & BDT multi-jet estimates
- Large-R jet energy & mass resolution & scale
- V-tagger uncertainties from independent semilep ttbar-enriched events
- *Hbb*-tagger efficiency, further constrained due to *Z*->*bb* resonance
- *Z*+jets normalisation determined by fit to data
 - Shape effects from scale variations
- Scale variations, alternative event generators & **normalisation** uncertainties for other subdominant backgrounds:
 - *ttbar*: 12%
 - *p*_T-dependent norm from semileptonic events in pure CR (*Phys. Rev. D 105, 092003*)
 - VV: 80%
- Simultaneous binned maximum-likelihood fit to m_J^H in SR & CR in range 60 to 200 GeV

[A. Sciandra | Boosted VH->qq bb with ATLAS | Higgs Hunting | Sep 13, 2023] 12

Inclusive Results

NEW RESULTS!

- Observed Z+jets normalisation: $\mu_Z = 1.41^{+0.80}_{-0.58}$
- Observed V(qq)H(bb) best-fit value: $\mu = 1.39^{+1.02}_{-0.88}$

(±0.63 stat. +0.80-0.61 syst.)

- Observed significance for rejection of null-signal hypothesis: 1.7σ (1.2σ expected)
- Corresponding to an observed cross-section:

3.3±1.5(stat)^{+1.9}-1.5(syst) pb

Systematic uncertainties dominated by shape of multi-jet

data-driven estimate & Hbb-tagger scale factors

-	Uncertainty source	δμ
-	Signal modeling	+0.10 -0.02
	MC statistical uncertainty	+0.13 -0.13
	Instrumental (pileup, luminosity)	$+0.012 \\ -0.004$
	Large-R jet	+0.13 -0.14
	Top-quark modeling	+0.14 -0.15
	Other theory modeling	$+0.050 \\ -0.031$
	$H \rightarrow b\bar{b}$ tagging	$+0.52 \\ -0.23$
	Multijet estimate (TF uncertainty)	$^{+0.52}_{-0.41}$
-	Multijet modeling (TF vs. BDT)	+0.14 -0.18
-	Total systematic uncertainty	+0.80 -0.61
et	Signal statistical uncertainty	$+0.60 \\ -0.60$
	Z+jets normalization	$+0.42 \\ -0.20$
-	Total statistical uncertainty	+0.63 -0.63
	Total uncertainty	+1.02 -0.88

Inclusive Results - Post-Fit Plots

NEW RESULTS!

Differential Results

- Signal strengths resulting from fit to each of the three p_T categories
 - *p*_T ∈ [250, 450) GeV **µ** = **0.6**^{+1.8}_{-1.7}
 - *p*_T ∈ [450, 650) GeV **µ** = **0.6**^{+1.3}_{-1.2}
 - *p*_T ≥ 650 GeV **µ** = **4.5**^{+8.8}_{-2.7}

Performed a first dedicated search for production of VH associated production in

boosted fully hadronic final state

- Higgs-boson transverse momenta towards TeV scale start to be at reach!
- Mass distribution of Higgs-candidate large-R jet fit to extract VH rate, both **inclusively** &

differentially in p_T

- Overall observed VH significance of 1.7σ
- Rates extracted in three *p*_T ranges: [250,450), [450,650), **≥650 GeV**
- Paving the road for more & more dedicated searches for Higgs-boson production in the

boosted all-hadronic phase space... stay tuned!

The BDT Method

- BDT method: extract background templates from events failing both V- and Hbb-tagger requirements
 - MVA used to perform **kinematic reweighting**, by predicting event weights needed to bring shapes of kinematic distributions in CRs and SRs into agreement

Transfer Factor & BDT Methods

- Consistent multi-jet predictions between the two methods
 - Difference assumed as alternative shape systematics

