QCD effects in $b \rightarrow s$ decays
 IJCLab-17/01/2023

Méril Reboud

Mostly based on:

- Gubernari, MR, van Dyk, Virto 2206.03797
- Amhis, Bordone, MR 2208.08937

Durham
University

I. Introduction

Why $b \rightarrow s(\mu \mu) ?$

- FCNC \rightarrow highly suppressed in the SM (GIM, CKM, loop)
\rightarrow Very rare processes: BR $\sim 10^{-7}$ or smaller
- Rich BSM pattern due to the flavour structure
- Experimentally accessible at BaBar, Belle, Belle II, LHCb...

Experimental results (I)

- Empty bins correspond to J / Ψ and $\psi(2 S)$ resonances
- Branching ratio are normalized using $\mathbf{B} \boldsymbol{\rightarrow} / \mathbf{\Psi} \mathbf{K}^{(*)}$ (known to a few percent)
- Systematic uncertainties are partially correlated (which makes the combination harder)
- Theory uncertainties mostly come from QCD and are the aim of this talk

Experimental results (II)

II. Predictions

Form factors in $\mathrm{b} \rightarrow$ sll

$$
\mathcal{H}(b \rightarrow s \ell \ell)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)
$$

$$
\begin{aligned}
\mathcal{O}_{9(10)} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\ell} \gamma^{\mu}\left(\gamma_{5}\right) \ell\right) \\
\mathcal{O}_{7} & =\frac{e}{16 \pi^{2}}\left(\bar{s}_{L} \sigma_{\mu \nu} b_{R}\right) F^{\mu \nu}
\end{aligned}
$$

$$
\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

- $B \rightarrow K^{(*)} \mu \mu$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu \mu$
- $\Lambda_{b} \rightarrow \Lambda^{(*)} \mu \mu$

Local form-factors, involves e.g.

$$
\mathcal{F}_{\mu}(k, q)=\langle\bar{M}(k)| \bar{s} \gamma_{\mu} b_{L}|\bar{B}(q+k)\rangle
$$

Form factors in $\mathrm{b} \rightarrow \mathrm{sll}$

$$
\mathcal{H}(b \rightarrow s \ell \ell)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)
$$

$$
\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

$\mathcal{H}_{\mu}(k, q)=i \int d^{4} x e^{i q \cdot x}\langle\bar{M}(k)| T\left\{\mathcal{J}_{\mu}^{\mathrm{em}}(x), \mathcal{C}_{i} \mathcal{O}_{i}\right\}|\bar{B}(q+k)\rangle$

Non-local form-factors

\rightarrow Main contributions: the "charm-loops" $\quad \mathcal{O}_{2(1)}^{c}=\left(\bar{s}_{L} \gamma_{\mu}\left(T^{a}\right) c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu}\left(T^{a}\right) b_{L}\right)$

Local form factors

- 2 main approaches
- Lattice QCD \rightarrow most feasible at large \mathbf{q}^{2}
- Light-cone sum rules \rightarrow most feasible at small \mathbf{q}^{2}
- 2 possible LCSRs:
- Light meson LCDA [recent works: Bharrucha, Straub, Zwicky '15; Khodjamirian, Rusov '17]
- B meson LCDA [recent works: Khodjamirian, Mannel, Pivovarov, Wang '10; Gubernari, Kokulu, van Dyk '18]
\rightarrow Interpolation in the physical range

Form Factor Properties

$$
\mathcal{F}_{\mu}(k, q)=\langle\bar{M}(k)| \bar{s} \gamma_{\mu} b_{L}|\bar{B}(q+k)\rangle
$$

Analytic properties of the form factors:

- Pole due to bs bound state
- Branch cut due to on-shell BM production

Form Factor Properties

$$
\mathcal{F}_{\mu}(k, q)=\langle\bar{M}(k)| \bar{s} \gamma_{\mu} b_{L}|\bar{B}(q+k)\rangle
$$

Form Factor Parametrization

Conformal mapping [Boyd, Grinstein, Lebed '97]

$$
z(s) \equiv \frac{\sqrt{s_{+}-s}-\sqrt{s_{+}-s_{0}}}{\sqrt{s_{+}-s}+\sqrt{s_{+}-s_{0}}}
$$

Simplified Series expansion [Bourrely, Caprini, Lellouch, '08; Bharucha, Feldmann, Wick '10]

$$
\mathcal{F}_{\lambda}^{(T)}\left(q^{2}\right)=\frac{1}{q^{2}-m_{B_{s}^{*}}^{2}} \sum_{k=0}^{N} \alpha_{\lambda, k} z^{k}
$$

$N=2$ is enough to provide an excellent description of the data (p-values > 70\%)

Local form factors

[Gubernari, MR, van Dyk, Virto '22]

Combined fit to LCSR and lattice QCD Inputs:

- B \rightarrow K:
- [HPQCD'17; FNAL/MILC '17]
- [Khodjamiriam, Rusov '17]
- $B \rightarrow K^{*}$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, Kokulu, van Dyk '18]
- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, van Dyk, Virto '20]

What about the model uncertainties? What if we only have LQCD?

II. Dispersive bound

Dispersive bound

- Main idea: Compute the inclusive $e^{+} e^{-} \rightarrow \bar{b} s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

+ other diagrams: loops, quark and gluon condensates...
- Unitarity gives shared bounds for all the $\mathbf{b} \rightarrow \mathbf{s}$ processes: (schematically)

$$
1>2 \int_{\left(m_{B}+m_{K}\right)^{2}}^{\infty}\left|\widehat{\mathcal{F}}_{X}^{B \rightarrow K}(t)\right|^{2} d t+2 \int_{\left(m_{B}+m_{K^{*}}\right)^{2}}^{\infty}\left|\hat{\mathcal{F}}_{X}^{B \rightarrow K^{*}}(t)\right|^{2} d t+\ldots
$$

$$
\text { known functions } \times \mathcal{F}_{X}^{B \rightarrow K}(t)
$$

Simple case: B \rightarrow K

- The branch cut starts at the pair production threshold
- The monomial z^{k} are orthogonal on the unit circle

$$
\hat{\mathcal{F}}_{X}^{B \rightarrow K}=\sum_{k=0}^{N} a_{X, k} z^{k}
$$

$\int_{\left(m_{B}+m_{K}\right)^{2}}^{\infty}\left|\hat{\mathcal{F}}_{X}^{B \rightarrow K}(t)\right|^{2} d t=\sum_{k=0}^{N}\left|a_{X, k}\right|^{2}$

Less simple case, e.g. $\wedge_{b} \rightarrow \wedge^{*}$

$\xrightarrow[0]{\text { Region of Interest }}$

- The first branch cut (BK) starts before the pair production threshold
- Introduce orthonormal polynomials of the arc of the unit circle

$$
\hat{\mathcal{F}}_{X}^{\Lambda_{b} \rightarrow \Lambda^{*}}=\sum_{k=0}^{N} a_{X, k} p_{k}(z)
$$

$\int_{\left(m_{\Lambda_{b}}+m_{\Lambda^{*}}\right)^{2}}^{\infty}\left|\hat{\mathcal{F}}_{X}^{\Lambda_{b} \rightarrow \Lambda^{*}}(t)\right|^{2} d t=\sum_{k=0}^{N}\left|a_{X, k}\right|^{2}$

III. Numerical results for $\Lambda_{b} \rightarrow \Lambda^{*}$

Fit results

- Inputs:
- LQCD [Meinel, Rendon '21]
- no LCSR \rightarrow use SCET relations [Descotes-Genon, Novoa-Brunet '19]

$f_{\perp^{\prime}}(0)=0 \pm 0.2$,	$g_{\perp^{\prime}}(0)=0 \pm 0.2$,	$h_{\perp^{\prime}}(0)=0 \pm 0.2$,
$\tilde{h}_{\perp^{\prime}}(0)=0 \pm 0.2$,	$f_{+}(0) / f_{\perp}(0)=1 \pm 0.2$,	$f_{\perp}(0) / g_{0}(0)=1 \pm 0.2$,
$g_{\perp}(0) / g_{+}(0)=1 \pm 0.2$,	$h_{+}(0) / h_{\perp}(0)=1 \pm 0.2$	$f_{+}(0) / h_{+}(0)=1 \pm 0.2$,

$$
\mathrm{O}\left(\mathrm{a}_{\mathrm{s}} / \pi, \Lambda_{\mathrm{aco}} / \mathrm{m}_{\mathrm{b}}\right)
$$

- Use an under-constrained fit ($\mathrm{N}>1$) and allows for saturation of the dispersive bound
\rightarrow The uncertainties are model-independent, increasing the expansion order does not change
 their size

Phenomenology

- Uncertainties are large but under control and systematically improvable
- LHCb analysis is ongoing

IV. Non-local contributions

Non-local form factors

$$
\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

$$
\mathcal{H}_{\mu}(k, q)=i \int d^{4} x e^{i q \cdot x}\langle\bar{M}(k)| T\left\{\mathcal{J}_{\mu}^{\mathrm{em}}(x), \mathcal{C}_{i} \mathcal{O}_{i}\right\}|\bar{B}(q+k)\rangle
$$

- Problematic because they can mimic a BSM signal!
- \mathcal{H}_{λ} can be interpreted as a shift to C_{9} and C_{7}

- This shift is lepton-flavour universal (as now seen in the data)
- Notably harder to estimate, no lattice computation so far
- Different parametrizations are suggested

Theory inputs

\mathcal{H}_{λ} can still be calculated in two kinematics regions:

- Local OPE $|a|^{2} \gtrsim m_{b}{ }^{2}$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- Light Cone OPE $q^{2} \ll 4 m_{c}^{2}$ [Khodjamirian, Mannel, Pivovarov, Wang '10]

LO and a_{s} corrections

Parametrization \#1

- Simple \mathbf{q}^{2} expansion [Jäger, Camalich '12; Ciuchini et al. '15]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}^{\mathrm{QCDF}}\left(q^{2}\right)+h_{\lambda}(0)+\frac{q^{2}}{m_{B}^{2}} h_{\lambda}^{\prime}(0)+\ldots
$$

Computed in [Beneke, Feldman, Seidel '01]

- The h_{λ} terms can be fitted or varied

- Fitting the h_{λ} terms on data gives a satisfactory but uninformative result
- This parametrization cannot account for the analyticity properties of \mathcal{H}_{λ}

Analyticity properties

$$
\mathcal{H}_{\mu}(k, q)=i \int d^{4} x e^{i q \cdot x}\langle\bar{M}(k)| T\left\{\mathcal{J}_{\mu}^{\mathrm{em}}(x), \mathcal{C}_{i} \mathcal{O}_{i}\right\}|\bar{B}(q+k)\rangle
$$

Analyticity properties of the non-local form factors:

- Poles due to charmonium state
- Branch cut in the physical range due to on-shell D meson production: $B \rightarrow$ MDD

Parametrization \#2

- z-expansion: [Bobeth, Chrzaszcz, van Dyk, Virto '17]

$$
z(s)=\frac{\sqrt{4 m_{D}^{2}-s}-\sqrt{4 m_{D}^{2}-s_{0}}}{\sqrt{4 m_{D}^{2}-s}+\sqrt{4 m_{D}^{2}-s_{0}}} \quad \mathcal{H}_{\lambda}(z)=\frac{\mathcal{F}_{\lambda}(z)}{\mathcal{P}(z)} \sum_{k=0}^{N} a_{\lambda, k} z^{k}
$$

- Coefficients can be fitted on the light cone OPE results and the charmonium poles (8).
- Main issue: No control of truncation uncertainties!

Non-local contributions

- Main idea: Compute the charm-loop induced, inclusive $e^{+} e^{-} \rightarrow \bar{b} s$ cross-section and relate it to \mathcal{H}_{λ} [Gubernari, van Dyk, Virto '20]

- Unitarity gives a shared bound for all the $\mathbf{b} \rightarrow \boldsymbol{s}$ processes:

$$
\begin{array}{r}
1>2 \int_{-\alpha_{B K}}^{+\alpha_{B K}} d \alpha\left|\hat{\mathcal{H}}_{0}^{B \rightarrow K}\left(e^{i \alpha}\right)\right|^{2}+\sum_{\lambda}\left[2 \int_{-\alpha_{B K^{*}}}^{+\alpha_{B K^{*}}} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B \rightarrow K^{*}}\left(e^{i \alpha}\right)\right|^{2}+\int_{-\alpha_{B_{s} \phi}}^{+\alpha_{B s \phi}} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B_{s} \rightarrow \phi}\left(e^{i \alpha}\right)\right|^{2}\right] \\
+\Lambda_{b} \rightarrow \Lambda^{(*)} \ldots
\end{array}
$$

Parametrization \#3

$$
1>2 \int_{-\alpha_{B K}}^{+\alpha_{B K}} d \alpha\left|\hat{\mathcal{H}}_{0}^{B \rightarrow K}\left(e^{i \alpha}\right)\right|^{2}+\sum_{\lambda}\left[2 \int_{-\alpha_{B K^{*}}}^{+\alpha_{B K^{*}}} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B \rightarrow K^{*}}\left(e^{i \alpha}\right)\right|^{2}+\int_{-\alpha_{B_{s} \phi}}^{+\alpha_{B s} \phi} d \alpha\left|\hat{\mathcal{H}}_{\lambda}^{B_{s} \rightarrow \phi}\left(e^{i \alpha}\right)\right|^{2}\right]
$$

- The bound can be "diagonalized" with orthonormal polynomials of the arc of the unit circle [Gubernari, van Dyk, Virto '20]

$$
\mathcal{H}_{\lambda}(z)=\frac{1}{\phi(z) \mathcal{P}(z)} \sum_{k=0}^{N} a_{\lambda, k} p_{k}(z)
$$

- The new coefficients respect the simple bound:

$$
\sum_{n=0}^{\infty}\left\{2\left|a_{0, n}^{B \rightarrow K}\right|^{2}+\sum_{\lambda=\perp, \|, 0}\left[2\left|a_{\lambda, n}^{B \rightarrow K^{*}}\right|^{2}+\left|a_{\lambda, n}^{B_{s} \rightarrow \phi}\right|^{2}\right]\right\}<1
$$

Numerical analysis

- The new parametrization is fitted to

$$
\mathrm{B} \rightarrow \mathrm{~K}, \mathrm{~B} \rightarrow \mathrm{~K}^{*}, \mathrm{~B}_{\mathrm{s}} \rightarrow \varphi
$$

using:

- 4 theory point at negative q^{2} from the light cone OPE
- Experimental results at the J / Ψ
- Use an under-constrained fit and allows for saturation of the dispersive bound
\rightarrow The uncertainties are model-independent, increasing the expansion order does not change their size
\rightarrow All p-values are larger than 11\%
[Gubernari, MR, van Dyk, Virto '22]

SM predictions

- Good overall agreement with previous theoretical approaches
- Small deviation in the slope of $B_{s} \rightarrow \phi \mu \mu$
- Larger but controlled uncertainties especially near the J/ ψ
\rightarrow The approach is systematically improvable (new channels, $\psi(2 S)$ data...)

Confrontation with data

- Conservatively accounting for the non-local form factors does not solve the "B anomalies".
- In this approach, the greatest source of theoretical uncertainty now comes from local form factors.

Experimental results:
[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241,
2003.04831, 1606.04731, 2107.13428]

Méril Reboud - 17/01/2023

Additional plots can be found in the paper: 2206.03797

BSM analysis

- A combined BSM analysis would be very CPU expensive (130 correlated, non-Gaussian, nuisance parameters!)
- Fit separately C_{9} and C_{10} for the three channels:

$$
\begin{aligned}
& -B \rightarrow K \mu^{+} \mu^{-}+B_{s} \rightarrow \mu^{+} \mu^{-}{ }^{(*)} \\
& -B \rightarrow K^{*} \mu^{+} \mu^{-} \\
& -B_{s} \rightarrow \varphi \mu^{+} \mu^{-}
\end{aligned}
$$

${ }^{(*)} \mathrm{CMS}$ recently updated their $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$
 measurement [2212.10311]

Conclusion

Discussing BSM models requires a solid understanding of the hadronic physics:

- Local form factors are obtained by fitting LQCD results and LCSR calculations;
- Non-local form factors can also be constrained by theory calculation and experimental measurements
- Uncertainties are still large, but controlled by dispersive bounds
- Our approach is systematically improvable

Back-up

Resonance structure in $\Lambda_{b} \rightarrow J / \Psi \rho K$

[LHCb 1507.03414]

- The resonance structure way richer than the one in $B \rightarrow J / \Psi \pi K$
- $\wedge(1520)$ is the narrowest observed resonance
- Narrow-width approximation can be applied

Comparison with the literature: BR

- Branching ratio changes with respect to [Descotes-Genon, M. Novoa-Brunet '19] \rightarrow this is due to the Quark Model they used for the form factors, which is in large tension both with SCET relations and LQCD results

Comparison with the literature: A_FB

- The forward-backward asymmetry is not impacted

Details on the fit procedure

- The fit is performed in two steps...
- Preliminary fits:
- Local form factors:
- BSZ parametrization (8+19+19 parameters)
- Constrained on LCSR and LQCD calcultations
- Non-local form factors:
- order 5 GRvDV parametrization (12 + $36+36$ parameters)
-4 points at negative $q^{2}+B \rightarrow M J / \psi$ data
$\rightarrow 130$ nuisance parameters
- 'Proof of concept' fit to the WET's Wilson coefficients
- ... using EOS: eos.github.io

