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Outline

q Particle-level, event-level and experiment-level inference (e.g. 
ATLAS or CMS experiment on the Large Hadron Collider at CERN)

q High Energy Physics data are not images

q GAN/VAE for simulators

q Dealing with uncertainties

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop
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Modeling/Inference

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop
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Particle-level inference

qParticles identified (pattern)
qAnd measured : 3D direction and 

energy, origin

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop
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Experiment-level inference

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

To « see » the Higgs boson
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Evidence using a classifier

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshopBDT output
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Higgs evidence

Boosted Decision Tree using ~dozen of high level variables built
from final state 4-momentum
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ML on Higgs Physics
q At LHC, Machine Learning used almost since first data taking (2010) for 

reconstruction and analysis
q In most cases, Boosted Decision Tree on ~10 variables
q For example, impact on Higgs boson sensitivity at LHC:

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

è~50% gain on LHC running 
s

From Nature 560, 41–48 (2018) |
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High Energy Physics data 
are not images
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Typical Deep Learning application

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop
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An image, not the data

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

IceCube-170922A 22 September 2017
Blazar TXS 0506+056

Time encoded as color
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muon

anti-muon

electron

positron

Higgs boson

HèZ(èµ+µ-)Z(èe+e-)
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Jet Images with CNN

q Early attempt at image-like simulation
q èpromising results, but not really 

applicable

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman  
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http://arxiv.org/pdf/1511.05190v2.pdf
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End to end learning
q Train directly for signal on « raw » event ?
q Start from RPV Susy search
ATLAS-CONF-2016-057
q Fast Simulated events with Delphes

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Bhimji et al, 1711.03573

q Project energies on 64x64 hxf
grid

q Compare with usual jet 
Reconstruction and physics
Analysis variables such as: 

https://arxiv.org/abs/1711.03573
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End to end learning (2)

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop
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End to end learning (3)

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

q >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4-
momenta

q èCNN extract information from energy grid which is lost in the jets ?
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An exception : NOVA 

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Readout projections
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arXiv 1604.01444 Aurisano et al
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http://arxiv.org/abs/1604.01444


Graph Networks
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GNN

qNow some structure:
o vi : nodes
o ek : edges
o u : global  

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Global : potential energy
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Graph on HEP data

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

from 2007.13681

https://arxiv.org/abs/2007.13681
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An image, not the data

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

IceCube-170922A 22 September 2017
Blazar TXS 0506+056

Time encoded as color
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Graph NN for Ice Cube
q Graph NN: 

nodes,edges,and
Globals

q …allow generalization
of neighbouring pixels

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Jessica Hamrick
arXiv:1809.06166

q Application to IceCube, 
separating downwards
muon from neutrino from
muon from cosmic rays

q èquickly growing interest in 
Graph NN in HEP

https://arxiv.org/pdf/1809.06166.pdf
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Track Seeding with GNN

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

q Tracking for High Lumi – LHC, 
ATLAS/CMS

q Build edges between neighbour
q Then GNN trained to classify

double and triplet
q High efficiency reached with

subsecond computing time 
(also very parallelisabled)

q ècan be used as a filtering
stage before traditional Kalman
filter

2007.00149

https://arxiv.org/abs/2007.00149


Generative Adversarial
Network (GAN) /Variational
AutoEncoders (VAE) to 
accelerate simulators
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Accurate simulators

q Proton collision

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

q Interaction of particles with the detector

q èdata very similar to real data from the experiment
q + ground truth
q This has been in HEP culture since the seventies, and 

developped through huge efforts in resource and manpower

Stefan Höche
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GAN for simulation

q Half of LHC grid computers (~1.000.000 
cores) are crunching Geant4 simulation 
24/24 365/365

q …while LHC experiments are collecting 
more and more events

q èreducing CPU consumption of 
simulation is very important

q Geant4 is the standard in particle 
simulation

q Imagine training a GAN on single particle 
showers of all types and energies

q Then when an event is simulated it would 
ask for GAN showers on request 
(superfast by 3-4 order of magnitude)

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Geant4

GAN showers
(just cell energies)

Cells energies

Technology not unlike
artificial face generation
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ATLAS calo simulation

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

arXiv:2210.06204
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Results

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Energy response Shower width

h 2nd moment f 2nd moment

• Speed: <1ms compared to 10s
• Sufficient accuracy for physics ? 

Bulk and tails ? 
• Handling of (more) awkward

geometries ? (è graph based
GAN)

Shower depth Position scan



Dealing with Uncertainties
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Phys.Rev.Lett. 114 (2015)191803

Most complex measurement ever ?

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

https://arxiv.org/pdf/1503.07589.pdf
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Dealing with Uncertainties
q Our experimental measurement papers typically end with

o measurement = m ± s(stat) ± s(syst)
o s(syst) systematic uncertainty : known unknowns, unknown unknowns… 

Convincing oneself, co-authors, the whole community that we know what 
we are doingètrust !

q Name of the game is to minimize quadratic sum of :         
s(stat) ⨁s(syst)

q … while ML techniques are usually trained to minimise s(stat)
q Two challenges:
1. Maintain trust (s(syst)) while using AI more and more
2. Include somehow (various techniques) s(stat) ⨁s(syst) in the loss in 

order to minimise overall uncertainty
q “Uncertainty Quantification” is a fast growing field in Machine 

Learning

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop
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Modeling/Inference

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Hadronisation model : 
Pythia vs Herwig vs Sherpa…
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Syst Aware Training: adversarial

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Inspired from 1505.07818 Ganin et al :

Signal vs Background

Pythia vs Herwig

Gradient 
Reversal Layer
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Cautionary tale

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop

Ghosh & Nachman EPJC 82 46 (2022)

Goodhart’s law ”When a measure becomes
a target, it ceases to be a good measure”

Constrained by 70 years of 
Particle Physics measurements

https://link.springer.com/article/10.1140/epjc/s10052-022-10012-w
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Conclusion

q We (in High Energy Physics) are analysing data from multi-billion € 
projectsèshould make the most out of it!

q Dedicated representations (often Graph NN based) are being 
developped to deal with our semi-structured data

q Generative Models are accelerating our existing accurate but heavy 
simulators 

q The bottom line is always a measurement with uncertainties which 
sum up the trust of the community, which should be maintained 

AI for HEP, David Rousseau, Mar 2023, CLAS12 workshop


