

International workshop on CLAS12 physics and future perspectives at JLab

21-24 March 2023 - Paris (France)

First measurement of hard exclusive $\pi^{-}\Delta^{++}$ electro-production beam spin asymmetries off the proton

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Motivation

 $ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$

Provides access to the d-quark content of the nucleon

→ Provides acess to $p-\Delta$ transition GPDs

- \rightarrow 3D Structure of the Δ resonance and of the excitation process
 - → π[±] BSA is expected to be especially sensitive to the tensor charge of the nulceon / resonance (quark polarisation)

Motivation

4 chiral even GPDs 4 chiral odd GPDs

- 8 helicity non-flip trans. GPDs (twist 2)
- → First moments related to the Jones-Scardon and Adler form factors
- → Description of N→ Δ DVCS

K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

- 8 helicity flip trans. GPDs (twist-3)
- → Impact of transversely polarized virtual photons
- → Needed for pseudoscalar N \rightarrow ∆ DVMP
 - P. Kroll, K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023)

Hard Exclusive π^- Electroproduction and BSA

<u>Cross section</u> (longitudinally pol. beam and unpol. target):

$$2\pi \frac{d^2\sigma}{dtd\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \epsilon \cdot \cos(2\phi) \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cdot \cos(\phi) \frac{d\sigma_{LT}}{dt} + h \cdot \sqrt{2\epsilon(1-\epsilon)} \cdot \sin(\phi) \frac{d\sigma_{LT'}}{dt}$$

$$BSA(t,\phi,x_B,Q^2) = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{\sqrt{2\epsilon(1-\epsilon)}\frac{\sigma_{LT'}}{\sigma_0}\sin\phi}{1 + \sqrt{2\epsilon(1+\epsilon)}\frac{\sigma_{LT}}{\sigma_0}\cos\phi + \epsilon\frac{\sigma_{TT}}{\sigma_0}\cos2\phi}$$

$$\sigma_{LT'} \sim \sqrt{-t'} \quad \Im \left[G_{T_5}^3 \cdot A + c \ G_{T_7}^3 \cdot A' \right] \quad G_{T_5}^{(3)} + \frac{1}{2} G_{T_7}^{(3)} = -\frac{3}{2} \left(H_T^u - H_T^d \right)$$

e'

Experimental Setup and Run Periods

V. Burkert et al., Nucl. Instr. Meth. A 959, 163419 (2020)

- → Data recorded with CLAS12 during fall 2018 and spring 2019 (RG-A)
 - → 10.6 GeV / 10.2 GeV electron beam
 - → ~ 86 % average polarization
 - \rightarrow liquid H₂ target
 - ➔ Inbending (fall 2018, spring 2019) and outbending (fall 2018) torus field configuration

Particle ID and Kinematic Cuts

Electron ID	π ⁻ and p ID
\rightarrow eventbuilder PID	\rightarrow eventbuilder PID
ightarrow PCAL and DC fiducial cuts	\rightarrow DC fiducial cuts
\rightarrow PID refinements (see RG-A note)	$ ightarrow \Delta v_z$ cut and $ \chi^2_{ m pid} $ < 3 (π -) , < 4 (p)
• Particles only detected in the FD (5° < θ < 35°)	

International workshop on CLAS12 physics

5

Event Selection and Background Rejection

International workshop on CLAS12 physics

Event Selection and Background Rejection

Particle Distributions (-t < 1.5 GeV²)

Stefan Diehl, JLU + UCONN

International workshop on CLAS12 physics

Monte Carlo Simulations

2 MC samples have been used:

a) SIDIS MC sample with background merging

- → Does not contain the exclusive π - Δ ⁺⁺ production in the GPD regime (-t < 1.5 GeV²)
- Contains nonresonant background as well as ρ production and other potential background channels
- → Used to estimate background shape and contaminations

b) Exclusive $\pi^-\Delta^{++}$ MC

- → Phase space simulation with a weight added to match experimental data
- $\rightarrow \Delta$ peak with PDG mass and FWHM
- Both MCs are processed through gemc and reconstruction with inbending and outbending torus fields
- ➔ The final 4-vectors are smeared to introduce a realistic resolution

Exclusive Monte Carlo Simulations (inbending)

International workshop on CLAS12 physics

Stefan Diehl, JLU + UCONN

Signal and Background Separation

Signal and Background Separation

Stefan Diehl, JLU + UCONN

International workshop on CLAS12 physics

Resulting Beam Spin Asymmetries (Q²-x_B integrated)

Background Subtraction

<u>Method 1</u>: A sideband based background subtraction

1,2

1,4

14

S/B ratio based on data - MC comparison

0,14 integrated preliminary signal preliminary 0,12 bin 1 sideband 0,10 bin 2 0,08 -— bin 3 0,06 -0,04 0,02 sinþ $\mathsf{A}_{\mathsf{L}\mathsf{U}}$ 0,00 -0,02 -0,04

0.4

0.6

0.8

-t [GeV²]

1,0

10

1

0.2

S/B ratio

-0,06 --0,08 --0,10 --0,12 --0,14 -

0,2

0,6

0.4

0,8

-t [GeV²]

1,0

1,2

asymmetry of the sidebands

1,4

Background Subtraction

Method 2: A bin-by-bin background subtraction

• Fit of the $p\pi^+$ inv. mass with a "Sill" function and a 5th order polynomial in each Q², x_B, -t, Φ bin.

Stefan Diehl, JLU + UCONN

International workshop on CLAS12 physics

Sources of Systematic Uncertainty

1. Uncertainty of the background subtraction

- \rightarrow <u>2 sources of uncertainty</u>: S/B ratio and sideband asymmetry
- ightarrow Both sources were varied within their uncertainty range
 - → Typically in the order of 1.5 % (low -t) 12.5 % (high -t) (stat. ~ 12 25 %)
 - → Dominant sys. uncertainty for the high -t bins
- 2. Uncertainty of the beam polarization ~ 3.1 %
- 3. Effect of the extraction method and the denominator terms \sim 2.8 %
- 4. Acceptance and bin-migration effects ~ 2.9 %

 \rightarrow Comparison of injected and reconstructed BSA in the MC

- 5. Radiative effects ~ 3.0 %
- 6. Other sources (particle ID, fiducial cuts, ...) < 2.0 %

Stefan Diehl, JLU + UCONN

International workshop on CLAS12 physics

Outlook and Next Steps

<u>The N→Δ DVCS process:</u>

$$\gamma^* p \rightarrow N^* \gamma \rightarrow p meson \gamma$$

- Access to the helicity non-flip (twist-2) transition GPDs
- Detailed models for CLAS12 kinematics became available recently

 $e \; p \rightarrow e` \Delta^{\!\!+} \; \gamma \rightarrow e` \; n \; \pi^{\!\!+} \; \gamma$

Semenov-Tian-Shansky, Vanderhaeghen, arXiv:2303.00119 (2023)

International workshop on CLAS12 physics

Outlook and Next Steps

 $e \ p \rightarrow e' \ \Delta^+ \ \gamma \rightarrow e' \ n \ \pi^+ \ \gamma$

Kinematic cuts: W > 2 GeV $Q^2 > 1 \text{ GeV}^2$ y < 0.8 $-t < 2 \text{ GeV}^2$ $E_{DVCS} > 2 \text{ GeV}$

Outlook and Next Steps

Stefan Diehl, JLU + UCONN

International workshop on CLAS12 physics

20

Conclusion and Outlook

- Hard exclusive π - Δ ⁺⁺ production can be well measured with CLAS12.
- The channel provides a first observable sensitive to $p \rightarrow \Delta$ transition GPDs and a novel access to the d-quark content of the nucleon.
- The obtained BSA is clearly negative and ~ 2 times larger than for the hard exclusive π^+ production.
- A transition GPD based description of the reaction exists by P. Kroll and K. Passek-Kumericki, but a reliable prediction of BSAs is not possible due to missing experimental constraints to the transversity transition GPDs.

P. Kroll, K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023) arXiv:2211.09474

• The paper has been submitted to PRL this Tuesday. <u>arXiv:2303.11762</u>

Next steps:

- Analysis of the double spin asymmetry A_{11} of $\pi^{-}\Delta^{++}$ based on RG-C data.
- With RG-A pass 2, the non-diagonal DVCS process will provide additional constraints on the twist-2 transition GPDs (see theory work by K. Semenov-Tian-Shansky and M. Vanderhaegen).

K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

project number: 508107918

International workshop on CLAS12 physics

EORETICAL STUDIES CLEAR PHYSICS AND RELATED AREAS

ECT*-APCTP joint workshop: exploring resonance structure with transition GPDS

21 August 2023 — 25 August 2023

ECT* - Villa Tambosi

Strada delle Tabarelle, 286

Trento - Italy

Organizers

Stefan Diehl (Justus Liebig Unversity Giessen, Germany) stefan.diehl@exp2.physik.uni-giessen.de Charlotte Van Hulse (University of Alcala, Madrid Region, Spain) charlotte.barbara.van.hulse@cern.ch Vladimir Braun (University Regensburg, Germany) vladimir.braun@physik.uni-regensburg.de Yongseok Oh (Kyungpook National University, Republic of Korea) yohphy@knu.ac.kr Kyungseon Joo (University of Connecticut, United States) kyungseon.joo@uconn.edu Christian Weiss (Jefferson Laboratory, United States) weiss@jlab.org

https://www.ectstar.eu/workshops/ect-apctp-joint-workshop-exploring-resonance-structure-with-transition-gpds/

asia pacific center for theoretical physics