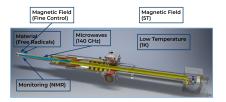

RG-C end of run and first look at physics

Noémie Pilleux - IJCLab Orsay CLAS collaboration meeting - March 21, 2023

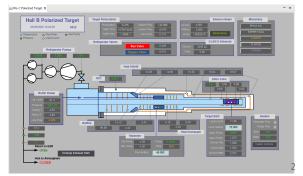
Physics goals and motivation

RGC main feature: longitudinally polarized NH₃ and ND₃ targets.


+ 10.5 GeV highly-polarized electron beam

Proposal	Physics	Contact	Group	Equipment	Energy (GeV)	Group	Target
E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	185- 120	Longitudinally Polarized target RICH (1 sector) Forward tagger	11	C S. Kuhn	NH3 ND3
E12-06-109A	DVCS on the neutron with polarized deuterium target	Niccolai					
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie					
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	Avakian					
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi					
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian					

Target overview

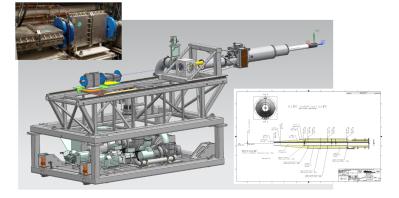

James Brock's talk for all target physics!

- Under 5T solenoid magnetic field
- Inside a 1K cryostat
- Samples are polarized with microwaves

- ND₃
- Background targets: empty, C, CH₂, CD₂ (mostly for dilution factor measurements)

A total of 75 target changes !

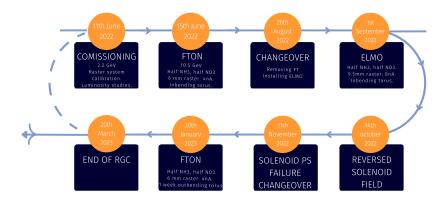
Many thanks to the target group for all the (very) hard work.


Beamline

The raster magnets

- Target is depolarized by radiation damage
- Beam is moved uniformly on the surface
 = rastering

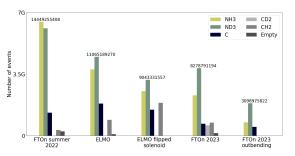
FTOn/ELMO configurations


- Beginning and end of RGC used the Forward Tagger
- Middle of the run used the ELMO Möller cone

Schedule

Schedule

Original plan: Run from June 8, 2022 to March 14, 2023 120 PAC days



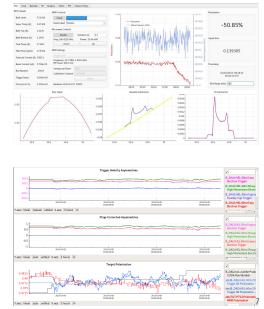
Many thanks to all Hall B engineers, technicians and experts for the several configuration changes!

Summary for data taking

Period	Planned PAC days	Actual	Effective	
FTOn 22	30 (15 NH ₃ / 15 ND ₃)	35	28	
ELMO	53	35	25.4	
FTOn 23	37	25		
Total	120	95		

"Effective" : accounting for real beam availability.

- FTOn 2022 : 14G events.
- ELMO : 20G events.
- FTOn 2023 : 8G + 3G events (inbending/outbending torus).

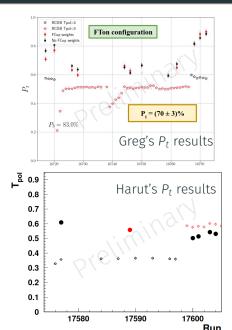

The target polarization

Monitoring the target polarization

Live monitoring:

- NMR coils around the target.
 - Continuously monitored.
 - Only a surface information.
- Trigger asymmetries.
 - Continuously monitored.
 - Normalisation extracted from DIS data analysis results.

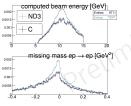
Thank you to the target group and to Nathan Baltzell for all the time dedicated to this.

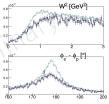


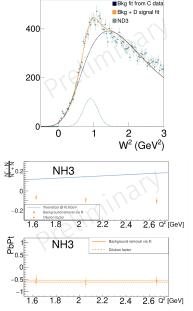
Monitoring the target polarization

Within a few days: DIS analysis $ep \rightarrow e'X$

- Comparing expected (model) and measured asymmetries. $A = A_{th} \times P_b \times P_t$
- Run by run measurement.
- Only reconstructing e⁻: no need for full calibration of the detectors
- Used to normalize trigger asymmetries. Indicates when anneals could be needed.

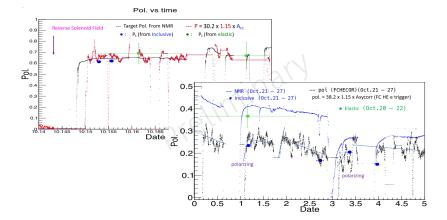

Thank you to Harut Avakian and Gregory Matousek!




Monitoring the target polarization

Longer term result: (quasi-) elastic analysis $ep \rightarrow ep$

- Comparing exact theoretical asymmetry and measured value.
- Later results since it necessitates full cooking of fully calibrated data
- Necessary to integrate over several runs to get decent statistics.



(Noémie Pilleux)

9

Summary of target polarization measurements

Many thanks to Tsuneo Kageya for these studies.

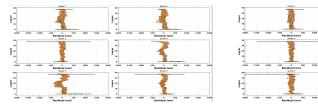
Solenoid power supply

The solenoid power supply failure

11th of November 2022

The solenoid power supply repairs

- November to January : incident analysis, repairs and testing.
- Failure was traced back to a firmware bug.
- January 30th: Thanks to the DC Power Group, Detector Support Group, Magnet Group, team from Danfysik, and Hall B technical staff all repairs and tests were successfully conducted and RGC restarted.
- ightarrow 80 days of work and repairs!

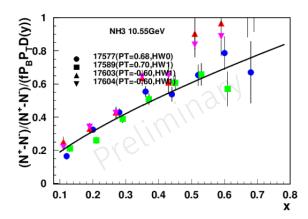


Analysis status and preliminary results

Cooking and calibration

Calibrations are ongoing:

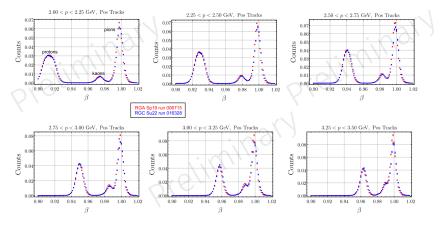
• Alignment has been completed for FTOn summer 2022 period.


Some preliminary cooking has been done:

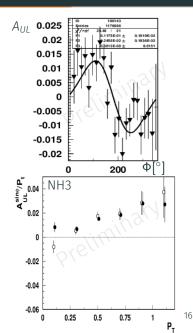
- Continuous cooking in HBT mode for target polarisation measurement.
- Preliminary cooking for analysis of a few runs in all configurations.

Thanks to Silvia Niccolai, Mohammad Hattawy, Kayleigh Gates!

Preliminary results for Deep Inelastic Scattering


- Harut Avakian DIS analysis.
- Big picture: spin structure of the nucleon at high x.
- Interest of a polarized target: accessing g_1 , polarized spin structure function.
- Observables: $A_{||}$, combination of $A_1 \simeq \frac{g_1(x)}{F_1(x)}$ and A_2 .

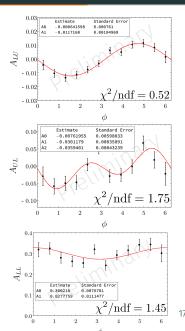
Preliminary SIDIS PID comparison to RGA Data


Timothy B. Hayward epX SIDIS analysis.

Preliminary HTCC and PCAL cuts give similar PID performances between RGA and RGC.

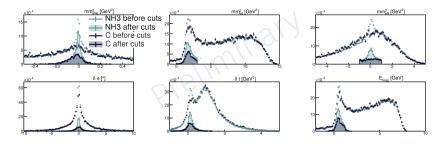
Preliminary asymmetries from $e\pi^+X$

- Harut Avakian SIDIS analysis $e\pi^+X$.
- Big picture: 3D imaging of the nucleon, spin orbit correlations, TMDs.
- Observables: Single and double spin asymmetries
- Interest of long. polarized target: TMDs and Collins fragmentation function are involved in the TSA. DSA for flavour and polarization dependence of TMDs.

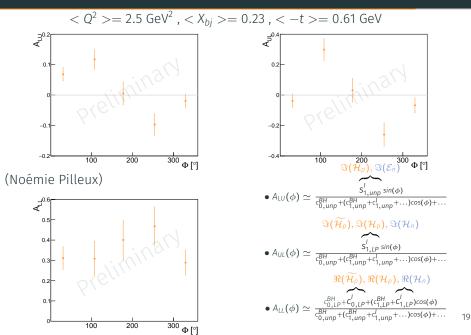


Preliminary asymmetries from epX

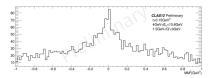
- Timothy B. Hayward SIDIS analysis.
- Big picture: 3D imaging of the nucleon, hadronization, Target Fracture Region
- Observables: Single and double spin asymmetries for Fracture functions .
- An interest of long. polarized target: DSA related to *g*₁, test of FrF formalism.

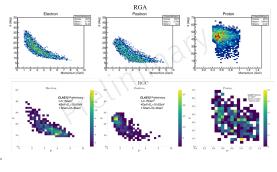

$$\begin{split} A_{LL} &= \lambda_{\ell} S_L \frac{\sqrt{1-\epsilon^2} F_{LL}}{F_{UU,T}} \\ F_{LL} \propto \tilde{l}_{1L} (x,\zeta,P_T^2) = \int d^2 k \frac{1}{\Gamma \hat{l}_{1L}} \\ \sum_h \int \zeta d\zeta \int d^2 P_T \tilde{l}_{1L} = (1-x) g_{1L} (x,k_T^2) \end{split}$$

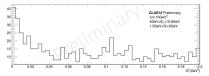
ightarrow Timothy's talk Wednesday 14:50.


Preliminary results for Deeply Virtual Compton Scattering

- + DVCS analysis. In this presentation, $ep \rightarrow ep\gamma$ in NH3 for 6 runs.
- Big picture: 3D imaging of nucleons, GPDs.
- Observables: Single and double spin asymmetries for CFFs.
- Interest of long. polarized target: Accessing GPDs \tilde{H}_p , H_p , H_n , E_n .


(Noémie Pilleux)

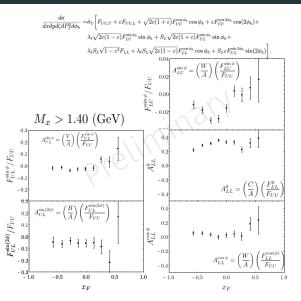

Preliminary asymmetries for pDVCS (NH3)



Preliminary results for Timelike Compton Scattering

- Kayleigh Gates TCS analysis $\gamma N \rightarrow \gamma^* N' (\gamma^* \rightarrow e^+ e^-)$ for 12 NH₃ runs
- Big picture: 3D imaging of nucleons, GPDs universality.
- Observables: Single and double spin asymmetries.
- Interest of long. polarized target: Accessing GPDs H
 _p, H_p.

- After 10 months of running, RG-C ended yesterday!
- One of the big achievements of years of developing the longitudinally polarized target.
- Thanks to the very efficient repairs, we could run 95 PAC days out of the planned 120 PAC days.
- First physics results are promising.
- Many more exciting results to come soon with pass0 cooking.
- End of run party: TBA!


Deepest gratitude to

- The target group, their work is the heart of RG-C: James Brock, Tsuneo Kageya, Chris Keith, Victoria Lagerquist, James Maxwell, Pushpa Pandey.
- All Hall B staff, technicians, engineers, detector experts for dealing with the endurance race that RG-C has been. In particular, many thanks to Denny Insley.
- Eugene Pasyuk for his PDL role, his guidance and his beamline expertise.
- All people that handled the solenoid power supply crisis: Probir Ghoshal and the magnet group, the detector support group, the DC power group and the review committee.
- Sergey Boyarinov, Valery Kubarovsky and Nathan Baltzell for rescuing, improving, maintaining DAQ and EPICS.
- All the RCs who didn't count their hours, sailed the experiment safely and kept shift takers content (and fed). Many thanks to all shift takers.
- The radiation control department for their help and availability.
- The software team who kept improving all tools, especially Raffaella De Vita.
- Silvia Niccolai for coordinating all the analysis and calibration, hosting all meetings and always being invested and excited in everyone's work.
- Mohammad Hattawy for all his efficient cooking and patient chef/sous-chef training. Kayleigh Gates, thank you for your availability and concern for a job well done.
- All RGC analysts mentioned previously for all the work showed in this presentation. Thank you to Samy Polcher and Derek Holmberg who also take part in this effort.
- Angela Biselli for designing ELMO.
- Sebastian Kuhn and Silvia Niccolai for carrying the RG-C program for years. Thank you for giving our community the opportunity to glimpse at exciting physics.
- Everyone who helped seeing RGC to its successful completion with all apologies if some names are missing.

Backup

Preliminary results from epX

- Asymmetries related to structure functions using depolarization factors.
- Structure functions related to FrF and fragmentation functions.

ightarrow Timothy's talk on Wednesday 14:50.