

CND NEUTRON DETECTION

Erin Seroka CLAS Collaboration Meeting March 23, 2023 Paris, France

This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0016583

MOTIVATION FOR NEUTRON DETECTION

Short-Range Correlation studies in RG-M

- Nuclear targets: H, D, ⁴He, C, Ar, Sn, ⁴⁰Ca, ⁴⁸Ca
- With increasing relative momentum, pn pairs expected to decrease relative to pp pairs
- Important to distinguish neutrons from protons
- Dominant systematic uncertainty: neutron efficiency

Goal

- Measure of neutron efficiency
- Algorithm for vetoing non-neutrons (especially protons) that are mis-reconstructed with neutron PID
- Applicable to non-exclusive channels with multiparticle final states in various targets

Under review in EPJA

DETECTION EFFICIENCY: EARLY WORK

RG-K data, 7.5 GeV

Momentum conservation used to predict neutron momentum

• $h(e, e'\pi^+n)$

Chatagnon thesis, CLAS12 NIM paper

DETECTION EFFICIENCY: APPROACH

Multiple channels to extend phase space: $h(e, e'\pi^+n)$, $d(e, e'p_{CD}n)$, $d(e, e'p_{FD}n)$

Background subtraction in bins of momentum or polar angle

Data sets: RG-K (H at 7.5 GeV), RG-B (D at 4.5 GeV), RG-M

DETECTION EFFICIENCY: RESULTS

NEUTRON VETO

CND neutron reconstruction

- Clusters form neutral seed if unassociated with a CVT track
- Neutrals considered to be only photons or neutrons
- Velocity cut: eta < 0.8 for neutron, eta > 0.8 for photon

Background sources

- Double hits
- Neutron and proton reconstructed in same place (cut on $heta_{np}$)
- Random co-incidence (off-time, etc.)
- Big problem: imperfect CVT efficiency means charged particle contamination

Past work

- Andrew Denniston: preliminary CND veto work
- Adam Hobart: Machine learning for DVCS

NEUTRON VETO: DEVELOPMENT IN SIMULATION

Approach using Machine Learning: Boosted Decision Trees

- Identify features that are best at distinguishing between real neutrons and "fake" neutrons (nonneutrons with neutron PID)
- Features: local, detector-level information, avoid kinematics

Sample generation

- Uniform e'n and e'p generators with nucleon momentum up to 1 GeV/c
- Run through GEMC, added CLAS12 RG-A background, reconstructed with coatjava
- Generated momentum "truth" preserved

Good neutron sample (signal): agreement with generated momentum in e'n+bknd

Fake neutron sample (background): all neutron PID in e'p+bknd

NEUTRON VETO: SIMULATION FEATURE LIST

Number of hits in 5 CND sectors closest to neutron

Energy deposition in 5 CND sectors closest to neutron

Number of hits in 6 CTOF components closest to neutron

Energy deposition in 6 CTOF components closest to neutron

Number of hits in CND cluster

Neutron energy

CND layer multiplicity (0 if CTOF only)

NEUTRON VETO: SIM FEATURE LIST

NEUTRON VETO: SIMULATION RESULTS

	feature	importance
3	CND nearby hits	0.390608
5	CTOF energy nearby	0.382342
4	CND nearby energy	0.090312
0	neutron energy	0.064781
1	CND layer multiplicity	0.058599
6	CTOF hits nearby	0.006953
2	cluster size	0.006405

NEUTRON VETO: DATA APPROACH

Available exclusive channels

- $h(e, e'\pi^+n)$
- $d(e, e'p_{CD}n)$ (2 GeV, 6 GeV)
- $d(e,e'p_{FD}n)$ (2 GeV, 6 GeV)
- $d(e, e'pp\pi^-)$

Select good and false neutrons

- Train on data when possible
- Start with $d(e, e'p_{CD}n)$ QE channel (higher stats)
- Using data from RG-M: LD2, 2 GeV
- Calculate expected neutron momentum with momentum conservation
- Train ML to separate neutrons vs bad neutrons

NEUTRON VETO: GOOD NEUTRONS (SIGNAL)

(GeV/c)

-160

-140

 $\cos \theta_{neut,pred} > 0.9$ | $p_{pred} - p_{neut}$ | < 0.1 GeV/c $M_{miss} < 1.05$ GeV/c

PRELIMINARY

1.5 1.4 1.3 1.2 1.1

0.9

0.8

0.5

0.5

Missing Mass (GeV/\$(^2))

Missing Mass vs x _B

11

NEUTRON VETO: NON-NEUTRONS (BACKGROUND)

NEUTRON VETO: D FEATURE LIST

PRELIMINARY

NEUTRON VETO: D RESULTS

	feature	importance
6	CTOF nearby hits	0.708382
3	CND nearby hits	0.130615
1	CND layer multiplicity	0.049967
0	neutron energy	0.045472
5	CTOF nearby energy	0.036551
4	CND nearby energy	0.023944
2	cluster size	0.005070

NEXT STEPS

Detection Efficiency

- Re-run with pass2 reconstruction
- Apply neutron veto algorithm
- CLAS analysis note

Neutron Veto ML Algorithm

- Channel to focus on protons mis-reconstructed as neutrons (e.g. $d(e, e'pp\pi^{-})$)
- Continue search for good features (e.g. number of nearby hits in CVT)
- Cross-tests on different data sets (end goal: apply to Carbon)

THANK YOU!

BACKGROUND: CND HIT NOT ASSOCIATED W/ TRACK

CND hits not associated with CVT track

Proton associated with one CND cluster but not another

Can cut on angle between neutron and proton

BACKGROUND: PROTONS MISIDENTIFIED AS NEUTRONS

Imperfect CVT tracking efficiency

Some protons mis-reconstructed as neutrons

This is the main background source we seek to eliminate with ML

BACKGROUND: DOUBLE HITS

Charged particles may leave two hits with two sets of PMT signals

Two PMT signals arrive at same time -> reconstructed near 40°

Easily eliminated using z cut

z vs. rho of CND Neutrons