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Introduction Modelling Results

Deeply Virtual Compton Scattering

• exclusive process, measured via leptoproduction of a photon

• interference with the Bethe-Heitler process gives unique access
to both real and imaginary parts of the DVCS amplitude
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Accessing GPDs

• at leading order four complex twist-two Compton form factors
H

(
ξ, t,Q2) , E (

ξ, t,Q2), H̃ (
ξ, t,Q2) , Ẽ (

ξ, t,Q2)
• factorization theorem [Collins et al. ’98]

• CFFs are a convolution [Müller ’92, et al. ’94, Ji, Radyushkin ’96]

aH
(
ξ, t,Q2) = ∫

dx Ca
(

x, ξ, Q2

Q2
0

)
H a (x, η = ξ, t,Q2

0
)︸ ︷︷ ︸

GPD

, a = q,G
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Types of models

1 “Physical” GPD (and CFF) model
2 Neural network parametrization of CFFs
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Modelling GPDs
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GPD evolution

• evolution in x space complicated, we introduce conformal
moments

Fn(η, t) =
∫ 1

−1
dxcn(x, η)F(x, η, t)

cn(x, η) = ηn Γ
(3

2
)
Γ(1 + n)

2nΓ
(3

2 + n
) C

3
2n

(
x
η

)
• C3/2

n Gegenbauer polynomials
• analytic continuation n → j ∈ C
• evolution diagonal in j space at LO

µ
d

dµ
Fq

j
(
η, t, µ2) = −αs(µ)

2π
γ
(0)
j Fq

j
(
η, t2, µ2)
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Hybrid model
• valence quarks modelled in x space (q = u, d) at crossover

line x = η (no Q2 evolution)

ImH(ξ, t) LO
= π

[
4
9

H uval(ξ, ξ, t) + 1
9

H dval(ξ, ξ, t) + 2
9

H sea (ξ, ξ, t)
]

• sea quarks modelled in j space
• SO(3) partial waves expansion
• leading contribution

H a
j (η = 0, t) = N a B (1 − αa + j, βa + 1)

B (2 − αa, βa + 1)
β(t)

1 − t(
ma

j

)2

,

(
ma

j
)2

=
1 + j − αa

α′a , β(t) =
(

1 − t
M 2

)−p
, a = {s, g}

• full NLO QCD Q2 evolution
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Dispersion relations

• CFFs constrained by dispersion relations

ReH(ξ, t) LO
= ∆(t)+ 1

π
P.V.

∫ 1

0
dx

(
1

ξ − x
− 1

ξ + x

)
ImH(x, t)

• only imaginary part of CFFs and one subtraction constant
∆(t) are modelled
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Neural networks constrained by dispersion relations

......

......

......

......

xB t

ImH ∆Im E

• Only imaginary part of CFFs and one subtraction constant
∆(t) are parametrized by neural nets
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Results
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Proton DVCS

Extraction of 6 CFFs

[M. Č., K. Kumerički, A. Schäfer, ’20], from JLab Hall A data
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Neutron DVCS

Neutron DVCS

[Benali et al. ’20], DVCS off a deuterium target

Using isospin symmetry (e.g. H val
u,proton = H val

d,neutron) we combine
proton and neutron DVCS data to separate up and down quark
contributions to CFFs.

13/29



Introduction Modelling Results

Flavor separation

• separate model for each flavor CFF: Hu, Hd
• fKM20 ”physical” flavored model, fNNDR neural nets and

dispersion relations
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Introduction Modelling Results

Flavor separation

Flavor CFFs
• up and down contributions to CFF H cleanly separated

H =
4
9
Hu +

1
9
Hd
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Flavor separation

• E cannot be separated
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CLAS22 predictions

CLAS 12 GeV predictions

• proton and neutron beam spin asymmetry

ALU =
dσ↑ − dσ↓

dσ↑ + dσ↓ ∝ Im

{
F1H+ ξ (F1 + F2) H̃ − ∆2

4M 2 F2E
}
sin(φ)

• we analyse harmonics with beam energy 10.4 GeV
• physical model only assumes isospin rotation

Hval
n =

2e2
d + e2

u
2e2

u + e2
d
Hval =

2
3
Hval , Hsea

n = Hsea
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CLAS22 predictions

2020 models predictions
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CLAS22 predictions
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CLAS22 predictions

Reweighting

• reweighting neural nets according to their χ2

• for the 2020 paper we had 20 neural nets in each model. Now
we generated additional 80 nets (same training procedure,
same old data) to “improve statistics”

• most χ2 were still too large, formal reweighting yields just one
“best” net

• hand selecting the best nets still yields too few nets
• it seems that reweighting procedure is appropriate for the

situation where new data is just a refinement of the old data,
and not when completely new observables are being measured
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CLAS22 predictions

New fits with CLAS 2022 data

• We performed new NN and NNDR fits on harmonics with new
CLAS 2022 data (39 points with −t < 0.5 GeV2) and
previously available JLab data (257 points)

2020 2023
fNN 1.5 1.25

fNNDR 1.5 >3

Table: χ2/Npts

• new data clearly exclude the fNNDR model
• we also trained NN and NNDR models on only CLAS data

(excluding Hall A data): fNNC23 and fNNDRC23 models
• fNNC23 behaves better than fNNDRC23, just like fNN23

outperforms fNNDR23, but fNN23 still outperforms all of
them

21/29



Introduction Modelling Results

CLAS22 predictions

Proton data
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CLAS22 predictions
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CLAS22 predictions
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CLAS22 predictions

Neutron data
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CLAS22 predictions

New CFF extraction
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CLAS22 predictions

Flavor separation of CFF H
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CLAS22 predictions

Flavor separation of CFF E
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Conclusion

Conclusion

• new data favours models without dispersion relations
• 2020 data allows for flavour separation of CFF H, but not E
• 2022 data allows for flavour separation of ImH and Re E
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