Impact of Neutron DVCS Measurements on Extraction of Compton Form Factors

Marija Čuić

University of Zagreb, Croatia

CLAS12 prospectives March 21-24, 2023, Paris

ntroduction	

Modelling

Outline

Introduction

Ø Modelling

8 Results

Proton DVCS Neutron DVCS Flavor separation CLAS22 predictions Conclusion

Deeply Virtual Compton Scattering

exclusive process, measured via leptoproduction of a photon

• interference with the Bethe-Heitler process gives unique access to both real and imaginary parts of the DVCS amplitude

Introduction	Modelling	Results
000		

Accessing GPDs

- at leading order four complex twist-two Compton form factors $\mathcal{H}(\xi, t, Q^2)$, $\mathcal{E}(\xi, t, Q^2)$, $\widetilde{\mathcal{H}}(\xi, t, Q^2)$, $\widetilde{\mathcal{E}}(\xi, t, Q^2)$
- factorization theorem [Collins et al. '98]

• CFFs are a convolution [Müller '92, et al. '94, Ji, Radyushkin '96]

$${}^{a}\mathcal{H}\left(\xi,t,Q^{2}\right) = \int \mathrm{d}x \ C^{a}\left(x,\xi,\frac{Q^{2}}{Q_{0}^{2}}\right) \underbrace{H^{a}\left(x,\eta=\xi,t,Q_{0}^{2}\right)}_{\mathsf{GPD}}, \ a=q,G$$

Modelling

Results

Types of models

- ① "Physical" GPD (and CFF) model
- ② Neural network parametrization of CFFs

Modelling GPDs

Introduction	Modelling	Results
	0000	

GPD evolution

 evolution in x space complicated, we introduce conformal moments

$$F_n(\eta, t) = \int_{-1}^1 dx c_n(x, \eta) F(x, \eta, t)$$
$$c_n(x, \eta) = \eta^n \frac{\Gamma\left(\frac{3}{2}\right) \Gamma(1+n)}{2^n \Gamma\left(\frac{3}{2}+n\right)} C_n^{\frac{3}{2}}\left(\frac{x}{\eta}\right)$$

• $C_n^{3/2}$ Gegenbauer polynomials

- analytic continuation $n
 ightarrow j \in \mathbb{C}$
- evolution diagonal in j space at LO

$$\mu \frac{d}{d\mu} F_j^q \left(\eta, t, \mu^2\right) = -\frac{\alpha_s(\mu)}{2\pi} \gamma_j^{(0)} F_j^q \left(\eta, t^2, \mu^2\right)$$

Hybrid model

• valence quarks modelled in x space (q = u, d) at crossover line $x = \eta$ (no Q^2 evolution)

$$\Im\mathfrak{m}\mathcal{H}(\xi,t) \stackrel{LO}{=} \pi \left[\frac{4}{9} H^{u_{\mathrm{val}}}(\xi,\xi,t) + \frac{1}{9} H^{d_{\mathrm{val}}}(\xi,\xi,t) + \frac{2}{9} H^{\mathrm{sea}}\left(\xi,\xi,t\right) \right]$$

- sea quarks modelled in j space
- SO(3) partial waves expansion
- leading contribution

$$H_{j}^{a}(\eta = 0, t) = N^{a} \frac{\mathbf{B} \left(1 - \alpha^{a} + j, \beta^{a} + 1\right)}{\mathbf{B} \left(2 - \alpha^{a}, \beta^{a} + 1\right)} \frac{\beta(t)}{1 - \frac{t}{\left(m_{j}^{a}\right)^{2}}},$$

$$(m_j^a)^2 = \frac{1+j-\alpha^a}{\alpha'^a}, \quad \beta(t) = \left(1 - \frac{t}{M^2}\right)^{-p}, \quad a = \{s, g\}$$

• full NLO QCD Q^2 evolution

Dispersion relations

CFFs constrained by dispersion relations

$$\mathfrak{Re}\,\mathcal{H}(\xi,t) \stackrel{LO}{=} \Delta(t) + \frac{1}{\pi} \mathrm{P.V.} \int_0^1 \mathrm{d}x \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \Im\mathfrak{m}\,\mathcal{H}(x,t)$$

- only imaginary part of CFFs and one subtraction constant $\Delta(t)$ are modelled

Results

Neural networks constrained by dispersion relations

• Only imaginary part of CFFs and one subtraction constant $\Delta(t)$ are parametrized by neural nets

Results

Introduction Modelling Results

Proton DVCS

Extraction of 6 CFFs

[M. Č., K. Kumerički, A. Schäfer, '20], from JLab Hall A data

[Benali et al. '20], DVCS off a deuterium target

Using isospin symmetry (e.g. $H_{u,\text{proton}}^{\text{val}} = H_{d,\text{neutron}}^{\text{val}}$) we combine proton and neutron DVCS data to separate up and down quark contributions to CFFs.

- Flavor separation
 - separate model for each flavor CFF: \mathcal{H}_u , \mathcal{H}_d
 - fKM20 "physical" flavored model, fNNDR neural nets and dispersion relations

Introduction 000	Modelling 00000	Results
Flavor separation		
Flavor CFFs		

 $\mathcal{H} = \frac{4}{2}\mathcal{H}_u + \frac{1}{2}\mathcal{H}_d$

 ${\ }^{\bullet}$ up and down contributions to CFF ${\mathcal H}$ cleanly separated

$$\begin{array}{c} \mathbf{g} \quad \mathbf{g} \\ \mathbf{$$

$$x_B = 0.36$$
$$Q^2 = 4 \text{ GeV}^2$$

Flavor separation

• \mathcal{E} cannot be separated

CLAS 12 GeV predictions

proton and neutron beam spin asymmetry

$$A_{LU} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \Im \mathfrak{m} \left\{ F_1 \mathcal{H} + \xi \left(F_1 + F_2 \right) \widetilde{\mathcal{H}} - \frac{\Delta^2}{4M^2} F_2 \mathcal{E} \right\} \sin(\phi)$$

- we analyse harmonics with beam energy 10.4 GeV
- physical model only assumes isospin rotation

$$\mathcal{H}_n^{\text{val}} = \frac{2e_d^2 + e_u^2}{2e_u^2 + e_d^2} \mathcal{H}^{\text{val}} = \frac{2}{3} \mathcal{H}^{\text{val}} , \quad \mathcal{H}_n^{\text{sea}} = \mathcal{H}^{\text{sea}}$$

2020 models predictions

Introduction 000	Modelling 00000	Results
CLAS22 predictions		
Reweighting		

- reweighting neural nets according to their χ^2
- for the 2020 paper we had 20 neural nets in each model. Now we generated additional 80 nets (same training procedure, same old data) to "improve statistics"
- most χ^2 were still too large, formal reweighting yields just one "best" net
- hand selecting the best nets still yields too few nets
- it seems that reweighting procedure is appropriate for the situation where new data is just a refinement of the old data, and not when completely new observables are being measured

Introduction	M

Results

CLAS22 predictions

New fits with CLAS 2022 data

• We performed new NN and NNDR fits on harmonics with new CLAS 2022 data (39 points with $-t < 0.5 \text{ GeV}^2$) and previously available JLab data (257 points)

	2020	2023
fNN	1.5	1.25
fNNDR	1.5	>3

Table: χ^2/N_{pts}

- new data clearly exclude the fNNDR model
- we also trained NN and NNDR models on only CLAS data (excluding Hall A data): fNNC23 and fNNDRC23 models
- fNNC23 behaves better than fNNDRC23, just like fNN23 outperforms fNNDR23, but fNN23 still outperforms all of them

Introduction

Modelling

Results

CLAS22 predictions

Proton data

04/0

24/29

Introduction 000	Modelling 00000	Results
CLAS22 predictions		
Neutron data		

Modelling

Results

CLAS22 predictions

New CFF extraction

Introduction 000 Modellin

Results

CLAS22 predictions

Flavor separation of CFF ${\cal H}$

Flavor separation of CFF \mathcal{E}

Introduction 000	Modelling 00000	Results
Conclusion		
Conclusion		

- new data favours models without dispersion relations
- 2020 data allows for flavour separation of CFF \mathcal{H} , but not \mathcal{E}
- 2022 data allows for flavour separation of $\mathfrak{Im}\,\mathcal{H}$ and $\mathfrak{Re}\,\mathcal{E}$