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Introduction
In principle, the measurement of onIy an electron and a photon is enough to

reconstruct a DVCS event. We aim for DVCS event reconstruction without
requiring final proton information.

Advantages (with respect to epy detection):
[ Gives access to a wider phase space for GPD studies.

O Improves GPD studies at low —t.
[ Higher statistics, hence more precise BSA measurements.

[ Helpful for experiments that do not consider proton detection such as RG-H
with transversely polarized NHs target (see Marco's presentation).

Difficulties:

0 The epvy final state includes background contributions from the whole Deep
Inelastic Scattering (DIS) spectra.

) Reduced options for cuts:
) Only one exclusivity variable: Missing mass of ep — ey.

Therefore, we need a method that ensures DVCS identification: Machine Learning
We test the ML approach on experimental data:

1. Validation of the method when we include the proton information.
2. Application to the case without proton information.
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ep — eyp: Data selection

Analyzed data set Exclusivity cuts:
1 RG-A data: unpolarized liquid We reconstruct ¢ and t in two ways:

hydrogen target. 1. Using y* and the outgoing photon
) Inbending torus configuration 7= ()
1 No restriction on the detection ; ; .
topology of the particles. = i&;ﬁ%i)* and the recoil proton p:
Kinematic window:
B! 280 =16(p) - o(1)] < 2°
a > 1 GeV~ , / 2
O At=|t —t 2 GeV
0 g’ > 2 GeV (photon), o p | (fé v ()] < 2 GeV,
0 k' > 1 GeV (electron), miss <+ GEV.
2 p’ > 0.3 GeV (nucleon). Event selection:

) No restriction on the number of
particles in the event or detection

I topology.
a1 / O If multiple e, v or p detections, we
;\"»\x\ B f select the set (e, 7, p) that
! e / minimizes the missing mass of the

[ hadronic production plan process ep — epy
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ep — eyp: Model training

The main contamination channel is ep — ep® — epy(7).
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ep — eyp: Background subtraction

To optimize the DVCS event selection, a Boosted Decision Tree
(BDT) is trained to classify the events.

) Discriminating variables: {M2,,, M2, A¢, At, 0. x}.

O Simulated DVCS as signal.

) 70 production data, reconstructed as DVCS, as background.

p’y?

Classifier output S 5 s
x SR T T TMVA
Z s Background 4 s SRR AR
= NN Data B 2 ook ~— ]
2 sk - 4 s F \. E
a L - d © 08 =
L - ] = E
4 & i 3 ok \ E
£ "+ 1 5 *'E B
F P 1 % E \ 3
b P 8 osf =
- ] z \
£ ] 05
2= ™ - F
P 3] 0.4
1 — £ MVA Method:
Lo 1 03 BDT
0 ! a . 02k ]
03 02 01 0 01 02 03 0 01 02 03 04 05 06 07 08 09 1
BDT response Signal efficiency
(a) BDT output distributions (b) ROC curve of the model

for different datasets. and applied cut.



Introduction  Analysis of ep — eyp Analysis of ep — ey(p) Beam Spin Asymmetry measurements Conclusions 5/15

ep — eyp: Background substraction
We extract a dataset with 89.67% DVCS and 10.32% DVMP.
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ep — ey(p): Data selection

Kinematic window: Event selection

We apply the same kinematic restrictions: .
PPl [ Only analyze events with 1 or 2

0 W>2Ge, photons. .

) [ The event is selected by taking the
0 @ >1Gev?, most energetic photon and electron.
1 q' > 2 GeV (photon), BDT training:
J k"> 1 GeV (electron). O Training for 7 and general DIS
0 _é <1, backgrounds.

) Discriminating variables:
Exclusivity cuts: {M2 5, M2y, M2y }.

However, our exclusivity cuts are no

longer useful. [ Dataset is splitted in two:

0 Events where the photon is in

d Ag=1otp)—of{y)tmod(180) <2, the FT (6, < 5°)
0 At=lH{p)—t{) <2 G2 [ Events where the photon is in
' the FD (6., > 5°)
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ep — ey(p): Model training
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ep — evy(p): Background subtraction

The training of the BDT results in:

Background rejection versus Signal efficiency
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Figure: ROC curve of the model for the DIS and 7° background trainings
indicating the applied cut. DIS training gives similar results in both cases.



Introduction  Analysis of ep — eyp Analysis of ep — ey(p) Beam Spin Asymmetry measurements Conclusions 9/15

ep — ey(p): Comparison with eyp detection

There are more events in general, mostly in the small t region.
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ep — ey(p): Comparison with eyp detection

There are more events in general, mostly in the small t region.
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Beam Spin Asymmetry

We construct bins of equal number of events before background
substraction

-13.908 <t(GeV?)< -0.811 -0.811 <t(GeV?)< -0.366 -0.366 <t(GeV?)< -0.000

10 12 10 12
Q° (Gev') Q (GeVY)

Figure: Binning scheme for BSA measurements in regions with 60K
events.
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Raw Beam Spin Asymmetry

_1ht—h po sin(¢) sin(¢) -
A= B ™~ T cos@) ™ oS [FIH L E(FL+ F)TL — ko€ + ]

| | GP | BP | GNP |

-0.366<t<-0.000 , 2.683<Q°<9.655 , 0.211<x,<0.658

ooF —+ (t)=-0220 (t) (GeV)? ] -0.251 [ -0.247 | -0.220

0of- ;gz by (@) (GeV)? | 3.753 | 3.759 | 3.717

N3 °\ (x8) 0.260 | 0.264 | 0.277
0 Global training with proton (blue): GP
0 Binned training with proton (black):

—0.2;— BP

03 e e e e W ) Global training without proton (red):

GNP

1 Training on bins gives very similar results to the global training.
) Training without proton information has an additional systematic shift.
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Raw Beam Spin Asymmetry
Now, comparing with a measurement from a previous CLAS12 analysis*.

1.8 GeV? < @ < 2.4 GeV? 0.16 < xg < 0.26 t> —0.2 Gev?

’ \ Proton \ No proton ‘

(histm - histp)/(histm-+histph - bin 26 <t> (GeV2) -0.138 -0.117
oy No.roweigntin (@) (GeV2) | 2.156 | 2.111
S A i (xg) 0.101 | 0.193
s +
’ :f_‘ ) BSA measurement from CLAS12
o + 7 analysis note (black).
e NS U Raw** BSA from the current
- analysis with proton detection (red)
B R R E-T R Fe T T 21130¢3(2ﬂdc;g§0 ) Raw** BSA from the current
analysis without proton detection
(blue)

*G. Christiaens et al. "Deeply Virtual Compton Scattering on proton: Beam Spin Asymmetry
extraction”. In: CLAS12 Analysis Note (2021).
** Before subtraction of the residual 70 contamination.
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Conclusions

() Boosted decision trees presents an alternative for channel
selection on an event-by-event basis.
U When the final proton is included:

[ DVCS exclusivity variables have a sufficient separation power
to allow DVCS and Deep Exclusive 7% Production
identification in an efficient way.

) Without any restriction on the detection topology and
including proton information, a dataset with ~ 90% DVCS
events can be extracted.

) Training on kinematical bins is not strictly needed.

1 When the final proton information is ignored:

) There is a strong contribution of DIS processes to the
background.

0 We can recover more events, in comparison to the
proton-detected case, and directly benefits the small t region.

) We have smaller statistical error bars on the BSA
measurements.

) In general, leftover contamination has to be subtracted.
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Outlook

U Subtraction of leftover contamination.
U Implementation of other background subtraction methods.
U Sweights technique (see Pivk, M., & Le Diberder, F. R.
(2005). Nucl. Instrum, 555(1-2), 356-369.).
) RG-H preparations (see Marco's presentation)
[ Transversely polarized NH3 target experiment.
[ Detector configuration only includes the forward detector.
U Analysis of data from deuterium target.
[ Test the method for neutron DVCS identification.
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Thanks
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ML approach: Boosted Decision Trees (BDT)

A decision tree:

) Scans the given variables looking
for the point with maximum
separation between classes.

) Splits the data recursively until
each event lies on a terminal
node (leaf) and assigns it a
score.

Additionally, boosting is:

1 Train iteratively a decision tree.

) At each step, focus the training

Taken from Coadou, Yann. EPJ Web on misclassified events.

of conferences. Vol. 55. EDP U Final classification is based on
Sciences, 2013. the majority of votes.
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ep — eyp: Background subtraction
A look to the kinematics:

Electron Photon Proton

e Lo bbbt 1
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Figure: Momentum of the final particles as a function of the polar angle
(first row) and detection polar vs azimuthal angle for each final state
particle (second row).
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ep — evy(p): Background subtraction

Let's finally look at the kinematics of the extracted dataset

Electron Photon Missing proton

picen)

200500 e i

Electron Photon Missing proton
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PN A e A TT  Vod
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il

= 906 150 100 50 O 50 100 150 300 ©
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LT N8
200 150 100" - 0

Figure: Momentum of the final particles as a function of the polar angle
(first row) and detection polar vs azimuthal angle for each final state for
0. < b°
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ep — evy(p): Background subtraction

Let's finally look at the kinematics of the extracted dataset

Electron Photon Proton

atcen

T

Electron Photon Proton

Ea
TS TSI T T PN

LA IRt
206 150 100 50 0 50 100 150 200 © 20615610650 0" 50 H00 “Ts0 200 © 150 100 - i
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Figure: Momentum of the final particles as a function of the polar angle
(first row) and detection polar vs azimuthal angle for each final state for
0., > 5°
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ep — evy(p): Background subtraction
The training of the BDT results in:

BDT classifier output: DIS training 6<5 BDT classifier output: ° training <5

(AN aNJ dx
(AN aNJ dx

(/M) aNJ dx
(/M) aNJ dx

Figure: BDT output distributions for the DIS and 7° background
trainings. in the two 6, regions.
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ROC reconstruction
Using a different sample, we can reconstruct the ROC curve

Signal Efficiency Background Rejection

o8-

06

02

I Y T R N R B
04 03 02 01 0 01 02 5304 0703 02 01 0 01 02 03 04
BDT Response BOT Response.

ROC

—

04 My cut
07l (88.81,84.21)
06— T

Figure: Reconstructed efficiencies as a function of the BDT response.
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ROC reconstruction

From the position on the ROC curve and the number of events, we
estimate that the original dataset was 54.58% DVCS and 44.16% 7°
production. So we can create an artificial dataset

M, (GeV?) M, , (Gev?) A g(deg)

N %) 6, x (deg)

Figure: Normalized DVCS exclusivity variables from data(red) and
simulated data (black) before BDT cut.
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ROC reconstruction

We observe consistency in the results.
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Figure: Normalized DVCS exclusivity variables from data(red) and
simulated data (black) after BDT cut.
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ROC reconstruction

Looking at each component:

My (GEV) M, (GeV?) B9 (deg)
(b) Simulated 7° data,
(a) Simulated DVCS before reconstructed as DVCS, before
(black) and after (red) BDT (black) and after (red) BDT
cut. signal efficiency: 89.03%, cut.Background rejection:

88.81% expected. 84.78%, 84.21% expected.
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ROC reconstruction

Let us see how 70 behaves after BDT cut.
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Figure: Data (red) and simulated 7, reconstructed as DVCS, (black)
after BDT cut.
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ROC reconstruction

Let us see how 70 behaves after BDT cut.

Mgw x (GeV?) Miv x (Gev?) A g(deg)

" L
P05 004003002001 0 001 002 D03 004 0.05 R e T T W R 1Y E e S R R R
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B B I R s S

Figure: Normalized Data (red) and simulated 7°, reconstructed as
DVCS, (black) after BDT cut.
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ROC reconstruction

Moreover, identifying DVCS events is as valuable as identifying7®
production events:

M2, (GeV?) M2, (GeV?)) A ¢ (deg)

002
oo
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oozsf o014
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T
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B D04 003502001 0" b1 002 003 004 b GRS 008 T Is T E

At(GeV?) 6, x (deg)

TR ATONII]
EE R R

Figure: Simulated 7° production data, reconstructed as DVCS, (black)
and experimental data (red) obtained by inverting the BDT cut.
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ep — ey(p): Data selection
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X
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Figure: Missing mass from the process ep — ey X for events with 1
(black), 2 (red) and 3 (blue) photon detections.
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ep — evy(p): Background subtraction

Conclusions 15/15
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Figure: Q*, xg, t and MQeW distributions, after BDT cut, when the recoil

proton is required (red) or not (blue) for 6, < 5°.
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ep — evy(p): Background subtraction

Q@ (GeV?)

=
— NoP deteced

55
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Figure: Q*, xg, t and MQeW distributions, after BDT cut, when the recoil
proton is required (red) or not (blue) for 6, > 5°.
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The applied BDT cut leads to the following efficiencies on
simulated data:

6, < 5° | Remaining | 6, > 5° | Remaining

on data on data

DVCS | 83.5% 86.93%
70 3.64% <10.3% 16.3% <100%
DIS | 0.044% <1.2% 0.77% <9.16%

) DVCS data can be extracted when photons are detected in the
Forward Tagger
) Remaining DIS contamination can be taken into the
systematics.

) Remaining contamination is the upper bound coming from the
hypothesis that 70% (80%) of the data in the FT (FD) is
background data.

) From simulations, we estimate that events at 6, > 5 contain 3
times more DIS events, 5 times more 70 events and 3 times less
DVCS events. (e.g. if 20% of the background is 7° production,
after BDT cut there will be 40% of 7° contamination.)
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Raw Beam Spin Asymmetry

0:368:12:0.000 , 2.683<079.653 , 0.2113,<0.658 0.366<15-0.000 , 1.001<G"<1.915 ,0.07x,<0.106. 0:368<12:0.000  1.001<G7<1.915 , 0.106:3,<0.125
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b = Qi =s.717 b Q% = 1.500 b Qi = 1722
Zg (xg 0277 (xg 120083 (xg =014

-0.366<t<-0.000 , 1.001<GF<1.915 , 0.125,<0.377 -0.36654<10.000 , 1.915<G%<2.683 , 0.107<x,<0.144. -0.366<t<-0.000 , 1.915<GF<2.683 , 0.144,<0.165
F (1)=-0176 T (1)=-0118
o2 (QF )= 1725

(x, =063

-0.066:1-0.000 1915<072.663 0,165,045 0.366<15-0.000 , 2.683<7<0.655 . 0.150<,<0.211
E (=020 “F <t=-0.169
o =3 (aF = 2328 o —+ (0 = 2992
(x = 0215 (x, 1= 0.185

Figure: raw BSA measurements for global training with proton (blue),
without proton (red) and binned training with proton (black).
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