A Machine Learning approach for DVCS identification without proton detection

Juan Sebastian Alvarado IJCLab - Orsay

International workshop on CLAS12 physics and future perspectives at JLab 22/03/2023

/15

Introduction

- 2 Analysis of $ep \rightarrow e\gamma p$
 - Data selection
 - Model training
 - Background substraction
- **3** Analysis of $ep \rightarrow e\gamma(p)$
 - Data selection
 - Model training
 - Background subtraction

Beam Spin Asymmetry measurements

5 Conclusions

Introduction

In principle, the measurement of only an electron and a photon is enough to reconstruct a DVCS event. We aim for DVCS event reconstruction without requiring final proton information.

'15

Advantages (with respect to $ep\gamma$ detection):

□ Gives access to a wider phase space for GPD studies.

□ Improves GPD studies at low -t.

□ Higher statistics, hence more precise BSA measurements.

□ Helpful for experiments that do not consider proton detection such as RG-H with transversely polarized NH₃ target (see Marco's presentation).

Difficulties:

- The *epγ* final state includes background contributions from the whole Deep Inelastic Scattering (DIS) spectra.
- □ Reduced options for cuts:

□ Only one exclusivity variable: Missing mass of $ep \rightarrow e\gamma$.

Therefore, we need a method that ensures DVCS identification: Machine Learning We test the ML approach on experimental data:

- 1. Validation of the method when we include the proton information.
- 2. Application to the case without proton information.

$ep \rightarrow e\gamma p$: Data selection

Analyzed data set

- RG-A data: unpolarized liquid hydrogen target.
- $\hfill\square$ Inbending torus configuration
- No restriction on the detection topology of the particles.

Kinematic window:

- □ W > 2 GeV, □ $Q^2 > 1$ GeV², □ q' > 2 GeV (photon), □ k' > 1 GeV (electron),
- \square **p**' > 0.3 GeV (nucleon).

Exclusivity cuts:

2/15

We reconstruct ϕ and t in two ways:

- 1. Using $\gamma *$ and the outgoing photon $\gamma : \Rightarrow \phi(\gamma)$
- 2. Using $\gamma *$ and the recoil proton $p: \Rightarrow \phi(p')$

$$\Box \ \Delta \phi = |\phi(p') - \phi(\gamma)| < 2^\circ$$
,

- $\Box \ \Delta t = |t(p') t(\gamma)| < 2 \text{ GeV}^2,$
- $\Box \ \mathbf{P}_{miss} < 1 \ \mathrm{GeV}.$

Event selection:

- No restriction on the number of particles in the event or detection topology.
- □ If multiple *e*, γ or *p* detections, we select the set (*e*, γ , *p*) that minimizes the missing mass of the process $ep \rightarrow ep\gamma$

3/15

$ep \rightarrow e\gamma p$: Model training

The main contamination channel is $ep \rightarrow ep\pi^0 \rightarrow ep\gamma(\gamma)$.

$ep \rightarrow e\gamma p$: Background subtraction

To optimize the DVCS event selection, a Boosted Decision Tree (BDT) is trained to classify the events.

- $\Box \text{ Discriminating variables: } \{M^2_{ep\gamma}, M^2_{e\gamma}, \Delta\phi, \Delta t, \theta_{\gamma X}\}.$
- Simulated DVCS as signal.
- \Box π^0 production data, reconstructed as DVCS, as background.

(a) BDT output distributions for different datasets.

(b) ROC curve of the model and applied cut.

15

5/15

$ep \rightarrow e\gamma p$: Background substraction

We extract a dataset with 89.67% DVCS and 10.32% DVMP.

6/15

$ep \rightarrow e\gamma(p)$: Data selection

Kinematic window: We apply the same kinematic restrictions:

- \Box W > 2 GeV,
- lacksquare $Q^2>1~{
 m GeV^2}$,
- $\hfill \ensuremath{\mathsf{q}}\xspace^\prime > 2$ GeV (photon),
- $\label{eq:k} \square \ \mathbf{k}' > 1 \ \text{GeV} \ (\text{electron}).$
- $\Box \ -\frac{t}{Q^2} < 1,$

Exclusivity cuts:

However, our exclusivity cuts are no longer useful.

 $\Box \ \Delta \phi = |\phi(p) - \phi(\gamma)| \operatorname{mod}(180) < 2^{\circ},$

 $\Box \quad \Delta t = |t(p) - t(\gamma)| < 2 \text{ GeV}^2,$

 $\Box \ \mathbf{P}_{miss} < 1 \ \mathrm{GeV}.$

Event selection

- Only analyze events with 1 or 2 photons.
- The event is selected by taking the most energetic photon and electron.

BDT training:

- **Training for** π^0 and general DIS backgrounds.
- Dataset is splitted in two:
 - $\hfill\square$ Events where the photon is in the FT ($\theta_{\gamma} < 5^\circ)$
 - □ Events where the photon is in the FD $(\theta_{\gamma} > 5^{\circ})$

$ep \rightarrow e\gamma(p)$: Model training

¹⁵ 7/15

$ep \rightarrow e\gamma(p)$: Background subtraction The training of the BDT results in:

Figure: ROC curve of the model for the DIS and π^0 background trainings indicating the applied cut. DIS training gives similar results in both cases.

$ep \rightarrow e\gamma(p)$: Comparison with $e\gamma p$ detection

There are more events in general, mostly in the small t region.

9/15

$ep \rightarrow e\gamma(p)$: Comparison with $e\gamma p$ detection

There are more events in general, mostly in the small t region.

No proton:proton ratios and $M_{e\gamma X}^2$ for $\theta_{\gamma} > 5^{\circ}$

Beam Spin Asymmetry

We construct bins of equal number of events before background substraction

11/15

Figure: Binning scheme for BSA measurements in regions with 60*K* events.

Raw Beam Spin Asymmetry

$$A_{LU} \equiv rac{1}{P} rac{h^+ - h^-}{h^+ + h^-} \sim rac{p_0 \, \sin(\phi)}{1 + p_1 \, \cos(\phi)} \, e^{-h_0 - h_0 - h_0}$$

-0.366<t<-0.000, 2.683<Q2<9.655, 0.211<x_<0.658

$$\frac{\sin(\phi)}{\sigma_{UU}}\Im\left[F_1\mathcal{H}+\xi(F_1+F_2)\tilde{\mathcal{H}}-kF_2\mathcal{E}+...\right]$$

	GP	BP	GNP
$\langle t \rangle (\text{GeV})^2$	-0.251	-0.247	-0.220
$\langle Q^2 \rangle ~(\text{GeV})^2$	3.753	3.759	3.717
$\langle x_B \rangle$	0.260	0.264	0.277

 $^{\prime}15$

Global training with proton (blue): GP

- Binned training with proton (black): BP
- Global training without proton (red): GNP

□ Training on bins gives very similar results to the global training.

□ Training without proton information has an additional systematic shift.

Raw Beam Spin Asymmetry

Now, comparing with a measurement from a previous CLAS12 analysis*.

 $1.8 \text{ GeV}^2 < Q^2 < 2.4 \text{ GeV}^2$ $0.16 < x_B < 0.26$ $t > -0.2 \text{ GeV}^2$

	Proton	No proton
$\langle t \rangle$ (GeV ²)	-0.138	-0.117
$\langle Q^2 \rangle$ (GeV ²)	2.156	2.111
$\langle x_B \rangle$	0.191	0.193

- BSA measurement from CLAS12 analysis note (black).
- Raw** BSA from the current analysis with proton detection (red)
- Raw** BSA from the current analysis without proton detection (blue)

*G. Christiaens et al. "Deeply Virtual Compton Scattering on proton: Beam Spin Asymmetry extraction". In: CLAS12 Analysis Note (2021).

** Before subtraction of the residual π^0 contamination.

Conclusions

- Boosted decision trees presents an alternative for channel selection on an event-by-event basis.
- □ When the final proton is included:
 - DVCS exclusivity variables have a sufficient separation power to allow DVCS and Deep Exclusive π⁰ Production identification in an efficient way.
 - Without any restriction on the detection topology and including proton information, a dataset with ~ 90% DVCS events can be extracted.
 - □ Training on kinematical bins is not strictly needed.
- □ When the final proton information is ignored:
 - There is a strong contribution of DIS processes to the background.
 - □ We can recover more events, in comparison to the proton-detected case, and directly benefits the small *t* region.
 - We have smaller statistical error bars on the BSA measurements.
- □ In general, leftover contamination has to be subtracted.

Outlook

- □ Subtraction of leftover contamination.
- Implementation of other background subtraction methods.
 - Sweights technique (see Pivk, M., & Le Diberder, F. R. (2005). Nucl. Instrum, 555(1-2), 356-369.).
- □ RG-H preparations (see Marco's presentation)
 - □ Transversely polarized NH₃ target experiment.
 - Detector configuration only includes the forward detector.
- □ Analysis of data from deuterium target.
 - Test the method for neutron DVCS identification.

Thanks

ML approach: Boosted Decision Trees (BDT)

Taken from Coadou, Yann. EPJ Web of conferences. Vol. 55. EDP Sciences, 2013. A decision tree:

 Scans the given variables looking for the point with maximum separation between classes.

15/15

 Splits the data recursively until each event lies on a terminal node (leaf) and assigns it a score.

Additionally, boosting is:

- □ Train iteratively a decision tree.
- At each step, focus the training on misclassified events.
- Final classification is based on the majority of votes.

$ep \rightarrow e\gamma p$: Background subtraction

A look to the kinematics:

15/15

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state particle (second row).

$ep \rightarrow e\gamma(p)$: Background subtraction

Let's finally look at the kinematics of the extracted dataset

15/15

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state for $\theta_{\gamma} < 5^{\circ}$

$ep \rightarrow e\gamma(p)$: Background subtraction

Let's finally look at the kinematics of the extracted dataset

15/15

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state for $\theta_{\gamma} > 5^{\circ}$

$ep \rightarrow e\gamma(p)$: Background subtraction The training of the BDT results in:

15/15

Figure: BDT output distributions for the DIS and π^0 background trainings. in the two θ_γ regions.

ROC reconstruction

Using a different sample, we can reconstruct the ROC curve

15/15

Figure: Reconstructed efficiencies as a function of the BDT response.

ROC reconstruction

From the position on the ROC curve and the number of events, we estimate that the original dataset was 54.58% DVCS and 44.16% π^0 production. So we can create an artificial dataset

15/15

Figure: Normalized DVCS exclusivity variables from data(red) and simulated data (black) before BDT cut.

15/15

ROC reconstruction

We observe consistency in the results.

Figure: Normalized DVCS exclusivity variables from data(red) and simulated data (black) after BDT cut.

ROC reconstruction

Looking at each component:

(a) Simulated DVCS before (black) and after (red) BDT cut. signal efficiency: 89.03%, 88.81% expected. (b) Simulated π^0 data, reconstructed as DVCS, before (black) and after (red) BDT cut.Background rejection: 84.78%, 84.21% expected. 15/15

ROC reconstruction

Let us see how π^0 behaves after BDT cut.

Figure: Data (red) and simulated π^0 , reconstructed as DVCS, (black) after BDT cut.

$^{\text{onclusions}}$ 15/15

ROC reconstruction

Let us see how π^0 behaves after BDT cut.

Figure: Normalized Data (red) and simulated π^0 , reconstructed as DVCS, (black) after BDT cut.

ROC reconstruction

Moreover, identifying DVCS events is as valuable as identifying π^0 production events:

15/15

Figure: Simulated π^0 production data, reconstructed as DVCS, (black) and experimental data (red) obtained by inverting the BDT cut.

15/15

$ep \rightarrow e\gamma(p)$: Data selection

Figure: Missing mass from the process $ep \rightarrow e\gamma X$ for events with 1 (black), 2 (red) and 3 (blue) photon detections.

$ep \rightarrow e\gamma(p)$: Background subtraction

15/15

Figure: Q^2 , x_B , t and $M_{e\gamma}^2$ distributions, after BDT cut, when the recoil proton is required (red) or not (blue) for $\theta_{\gamma} < 5^{\circ}$.

$ep \rightarrow e\gamma(p)$: Background subtraction

15/15

Figure: Q^2 , x_B , t and $M_{e\gamma}^2$ distributions, after BDT cut, when the recoil proton is required (red) or not (blue) for $\theta_{\gamma} > 5^\circ$.

onclusions 15/15

The applied BDT cut leads to the following efficiencies on simulated data:

	$\theta_{\gamma} < 5^{\circ}$	Remaining	$\theta_{\gamma} > 5^{\circ}$	Remaining
		on data		on data
DVCS	83.5%		86.93%	
π^0	3.64%	<10.3%	16.3%	<100%
DIS	0.044%	<1.2%	0.77%	<9.16%

- DVCS data can be extracted when photons are detected in the Forward Tagger
 - Remaining DIS contamination can be taken into the systematics.
- Remaining contamination is the upper bound coming from the hypothesis that 70% (80%) of the data in the FT (FD) is background data.
- □ From simulations, we estimate that events at $\theta_{\gamma} > 5$ contain 3 times more DIS events, 5 times more π^0 events and 3 times less DVCS events. (e.g. if 20% of the background is π^0 production, after BDT cut there will be 40% of π^0 contamination.)

Raw Beam Spin Asymmetry

15/15

Figure: raw BSA measurements for global training with proton (blue), without proton (red) and binned training with proton (black).