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Lecture 2: Exploring the New Landscape

e More on the Electroweak Theory
e Early Running
e Physics Potential vs. Energy
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Stability bounds
Quantum corrections to V(') = p2(¢'p) + |\ (p'¢)?

Triviality of scalar field theory bounds My from above

o Only noninteracting scalar field theories make sense
on all energy scales

e Quantum field theory vacuum is a dielectric medium
that screens charge

o = effective charge is a function of the distance or,
equivalently, of the energy scale

running coupling constant
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Bounding My from above ...

In \@* theory, calculate variation of coupling constant \
in perturbation theory by summing bubble graphs

A(p) is related to a higher scale A by

1 1 3
ORI O log (A/ 1)

(Perturbation theory reliable only when A is small,

lattice field theory treats strong-coupling regime)

=} (=)
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Bounding My from above ...

For stable Higgs potential (i.e., for vacuum energy not to
race off to —o0), require A(A) >0

Rewrite RGE as an inequality
1 3
> g log (M)
M) =
..implies an upper bound

A(p) < 272/3log (/1)

o = E E z 9ace
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Bounding My from above ...

If we require the theory to make sense to arbitrarily high
energies—or short distances—then we must take the limit
A — oo while holding p fixed at some reasonable physical

scale. In this limit, the forces (i) to zero.

— free field theory “trivial”
Rewrite as bound on My:

272
A= rep | 3

Choose 1 = My, and recall M7 = 2\(My)v?

A < My exp (47r2 v2/3ME,)

o & = E E DA
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Bounding My from above ...

Higgs-boson Mass (GeV)
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Bounding My from above ...

Moral: For any My, there is a maximum energy scale \*
at which the theory ceases to make sense.

The description of the Higgs boson as an elementary
scalar is at best an effective theory, valid over a finite
range of energies

Perturbative analysis breaks down when My — 1 TeV/c?
and interactions become strong

Lattice analyses = My <710 £ 60 GeV if theory
describes physics to a few percent up to a few TeV

If My — 1 TeV EW theory lives on brink of instability
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Requiring V(v) < V/(0) gives lower bound on My

Requiring that (¢)o # 0 be an absolute minimum of the
one-loop potential up to a scale A yields the
vacuum-stability condition ... (for m; < My,)

2 3GF\/_

M;, > = 2 (2My, + M3 — 4m}) log(A?/v?)

(No illuminating analytic form for heavy m;)

If Higgs boson is relatively light (which would require
explanation) then theory can be self-consistent up to very
high energies
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Consistent to Mpjanck
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Living on the Edge?

Require cosmological tunneling time, not absolute stability
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Isidori, et al., hep-ph/0104016
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http://arXiv.org/abs/hep-ph/0104016

Electroweak theory projection
Global fit + exclusions
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The Problem of Identity
Quark and Lepton Mixing

t->b'

d

100 9

O 80 70 60 50 40 30 20 1

e

What makes a top quark a top quark, ...7
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Why is empty space so nearly massless?

Natural to neglect gravity in particle physics ...

Gravitational ep interaction ~ 10~ x EM

h
GNewton small MPIanck - < <

1
2
GN ewton )
q

A~ 1.22 x 10" GeV large

Estimate B(K — 7G) ~ (

2
Mk _38
~ 10
M Planck
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The vacuum energy problem

But gravity is not always negligible

Higgs potential V(¢'y)
At the minimum

(') + 1Al (¥1p)?
2,2 4
% |A| v
V({(p'p)o) = =— <0.
((¢'e)o) = = 1
Identify MZ, = —242
V = 0 contributes position-independent vacuum energy density

M2 2
OH =

> 108 GeV*

~10* g cm™
Adding vacuum energy density 0,.c < adding cosmological constant
A to Einstein's equation

R, — %Rgm,

87 Gy 87 Gy
- C4 T;w + /\g;w N = C4 — Ovac
o 5 =, T 9ace



Observed pyac <

<1040 GeV*

1.5

Supernova Cosmology Project
Kowalski, et al., Ap.J. (2008)
T

ion 08
SN la

compilatio

Q

0.5

0.0

P
0.0

on =108 GeV*: mismatch by 10°*
A chronic dull headache for thirty years ...




Lecture 2: Exploring the New Landscape
Early Running

CLNS-131
November 1970
September 1973

(Preliminary Version)
Some Experiments on Multiple Ptoduction*

Kenneth G. Wilson
Laboratory of Nuclear Studies, Cornell University,
Ithaca, New York 14850

A program of experiments is described mainly
on secondary particle spectra to test scaling hypotheses
derived from the multiperipheral model. It is assumed
that diffraction dissociation and multiperipheral
processes are distinct effe;:ts, and the consequences
of this for the scaling laws are explained. Feynman's
analogy linking multiple production to the statistical
mechanical distribution functions of a gas is outlined,
and based on this analogy it is suggested that one
look for a correlation length in the two particlc

spectrum of secondaries.

=} = (PN G4
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http://www.lns.cornell.edu/public/CLNS/1970/CLNS70-131/

Wilson's Experiments in Multiple Production

o Topological cross sections: multiplicity distributions
diffractive + multiperipheral production?

o Feynman scaling: p(k,/E, k., E) independent of E?

o Factorization: p(k,/E, k,, E) same for (m, p)p in
proton hemisphere?

o Flat rapidity plateau in central region?
o Double Pomeron exchange?
o Correlation length experiment: oc exp(— |y1 — y»| /L)?

o Factorization test with central trigger
(to eliminate diffraction)
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QCD could be complete, up to ultrahigh energies
Doesn’t mean it must be!

No structural deficiencies a la electroweak theory
(but strong CP problem remains)

Perhaps . ..

e new kinds of colored matter beyond quarks gluons
(and maybe their superpartners)

e quarks might be composite in an unexpected manner

o SU(3). gauge symmetry might be vestige of a larger,
spontaneously broken, color symmetry.
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My speculation . ..
Event structure not a simple extrapolation of Tevatron

LHC's first surprise in this area: not a crack in the
foundations, but something perhaps buried within QCD
that we have not been clever enough to anticipate.

Some unusual structure in a few percent of events?
High-multiplicity hedgehog events? Sporadic event
structures? Dozens of small jets or other manifestations
of multiple parton collisions?

Soft collisions + underlying events
~» understanding multiple production, parton showers
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Lecture 2: Exploring the New Landscape
Physics Potential versus Energy

LHC Physics Potential vs. Energy
Chris Quigg*

Theoretical Physics Department
Fermi National Accelerator Laboratory
Batavia, Illinois 60510 USA

Parton luminosities are convenient for estimating how the
physics potential of Large Hadron Collider experiments
depends on the energy of the proton beams. I present
parton luminosities, ratios of parton luminosities, and
contours of fixed parton luminosity for gg, ud, and qq
interactions over the energy range relevant to the Large
Hadron Collider, along with example analyses for specific
processes.

arXiv:0908.3660v2 [hep-ph] 8 Sep 2009

EHLQ, Rev. Mod. Phys. 56, 579 (1984)
Ellis, Stirling, Webber, QCD & Collider Physics
MRSWO8NLO examples + RKE Lecture 3, SUSSP 2009

Full-page figures: lutece.fnal.gov/PartonLum
=] (=) = E £ DA
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http://arXiv.org/abs/0908.3660
http://dx.doi.org/10.1103/RevModPhys.56.579
http://theory.fnal.gov/people/ellis/BookFigs/Figs_jet/Figs7.html
http://projects.hepforge.org/mstwpdf/plots/plots.html
http://www.ippp.dur.ac.uk/Workshops/09/SUSSP65
http://lutece.fnal.gov/PartonLum

LHC experiments begin soon ...

The Large Hadron Collider will run for the first
part of the 2009-2010 run at 3.5 TeV per beam,
with the energy rising later in the run.

o How is the physics potential compromised by running
below 14 TeV?

o At what point will the LHC begin to explore virgin
territory and surpass the discovery reach of the
Tevatron experiments CDF and D07

=] (=) = E £ DA
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Parton Luminosities 4+ Prior Knowledge = Answers
Taking into account 1/5 behavior of hard scattering
Tdl _ 1/% Ldx £(a)

f f
e o e GO CR R BT

is a convenient measure of parton ij luminosity.

fl(a)(x): pdf;, T7=25/s

o(s) =3 / 9T TG s54(0)

s dr
{ij}

EHLQ §2 QCD & Co///der PhySICS §7.3

= oao
at the LHC



Parton Luminosity
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Chris Quigg (FNAL) LAL, Orsay - 7-13.11.2009 76 / 93



Parton Luminosity
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Parton Luminosity (light quarks)
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Luminosity Ratios

Ratio to Tevatron
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Luminosity Ratios
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Luminosity Ratios

CTEQ6L1: gg
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Luminosity Ratios
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Luminosity Ratios
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Luminosity Ratios
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Luminosity Ratios
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Luminosity Ratios

CTEQ6L1: ud
10° T x ud — W’
— E
10-1 \\\\ \\:
> 1072 \\
@ \ \\
<
100 R0.9
p] R2
g RTev
© R4
-4
i 1, — 2 TeV R6
R7
105 R10
106
102 107! 100 101
V3 [Tev]
[m] = = =

DA

Potential Discoveries at the LHC



Luminosity Ratios
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Luminosity Ratios
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Luminosity Ratios
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Luminosity Ratios
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Luminosity Ratios
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