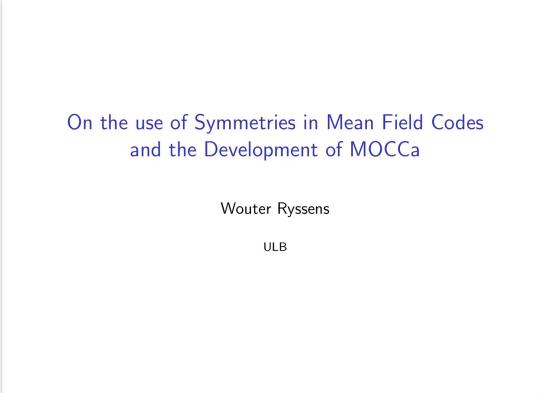

WOUTER RYSSENS

Microscopic models of nuclear structure for applications

March 26th 2023


wryssens@ulb.be

wryssens.com

(iD)

Andy Sproles, ORNL

May 2013: a young Belgian arrives in Bordeaux.....

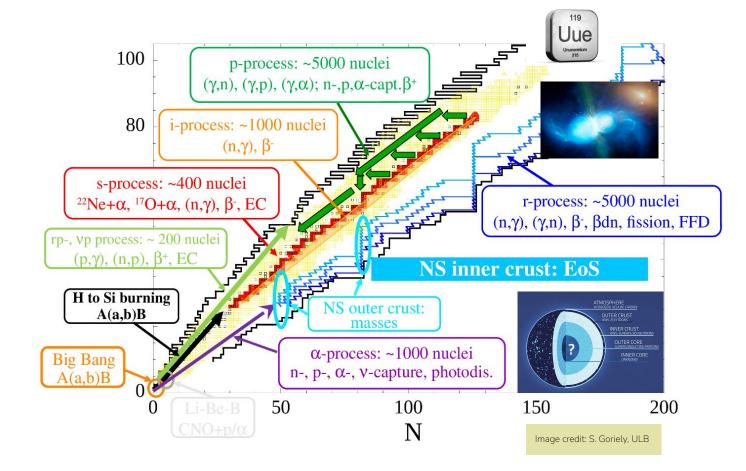
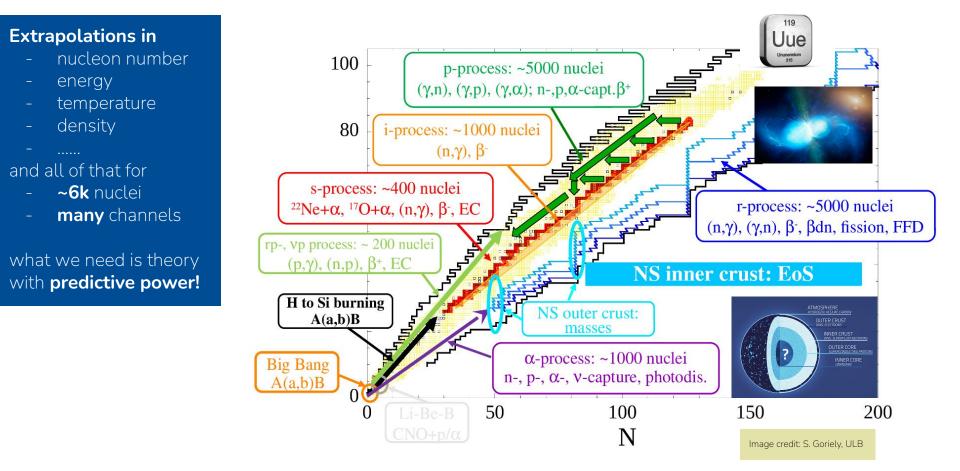
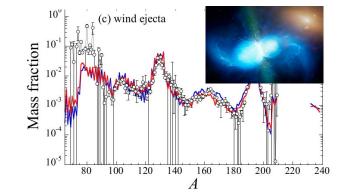


Table of contents

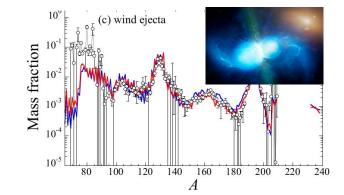

- 1. Nuclear theory for applications
- 2. Theory!
 - a. Energy density functionals
 - b. deformation
 - c. the BSkG-models
- 3. Interlude: why do we all these complex things?
- 4. The (current) reach of the BSkG models
 - a. masses, deformations, radii
 - b. rotation, magnetic moments, spins
- 5. Conclusion, problems and outlook

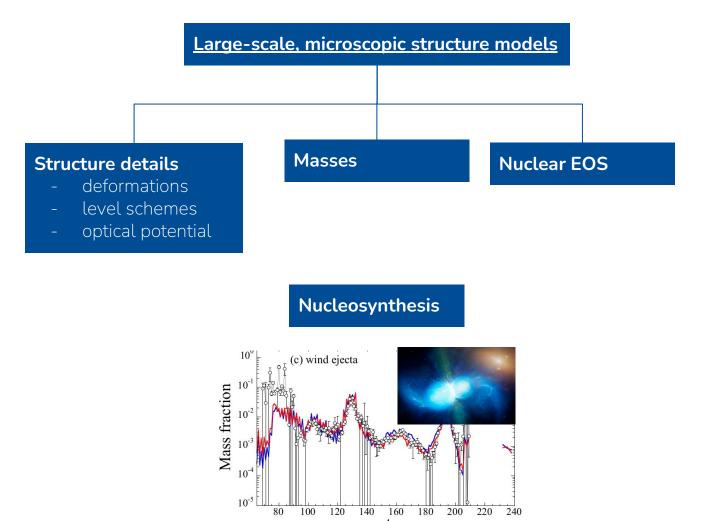
I. Nuclear theory for applications

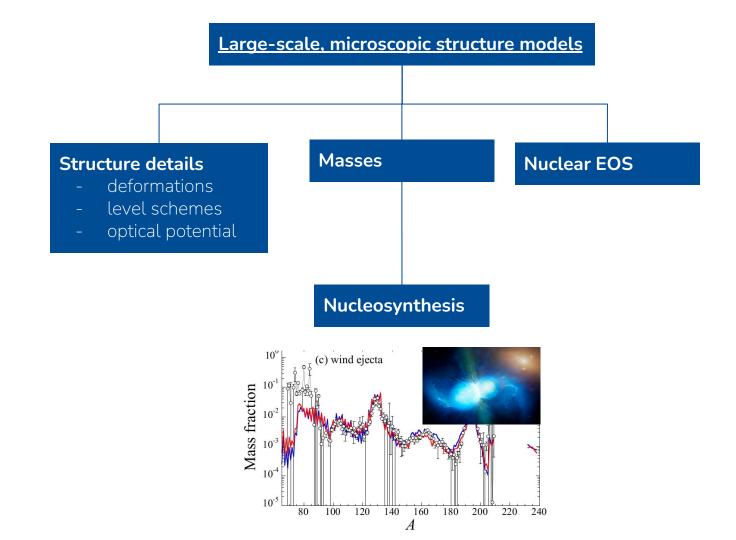
The challenge for nuclear theory: extrapolation!

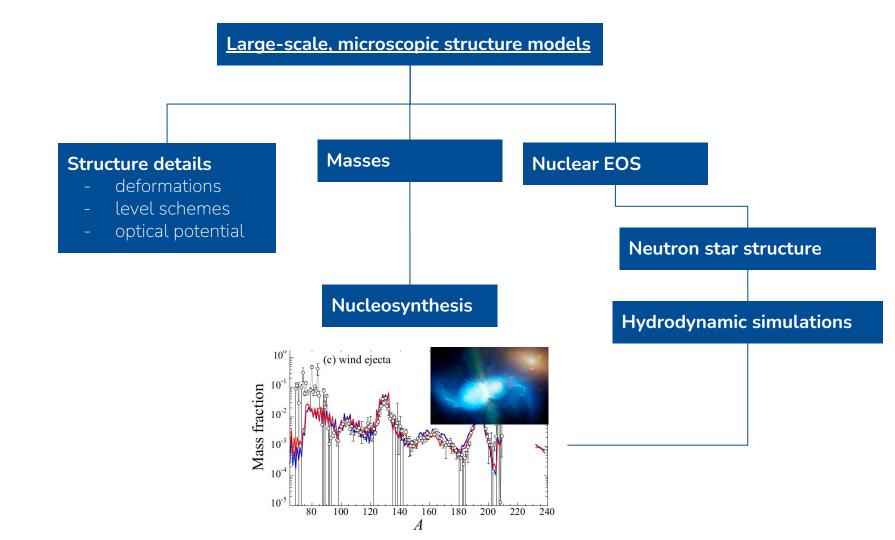


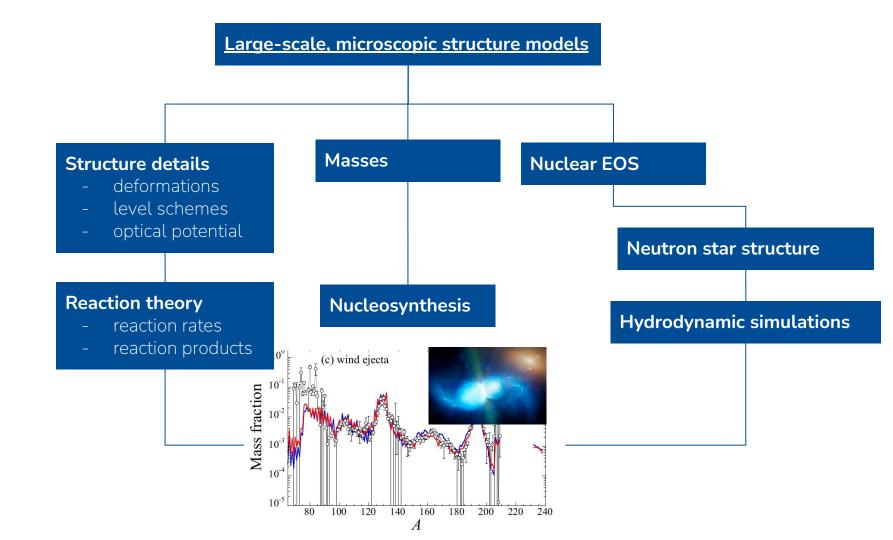
The challenge for nuclear theory: extrapolation!

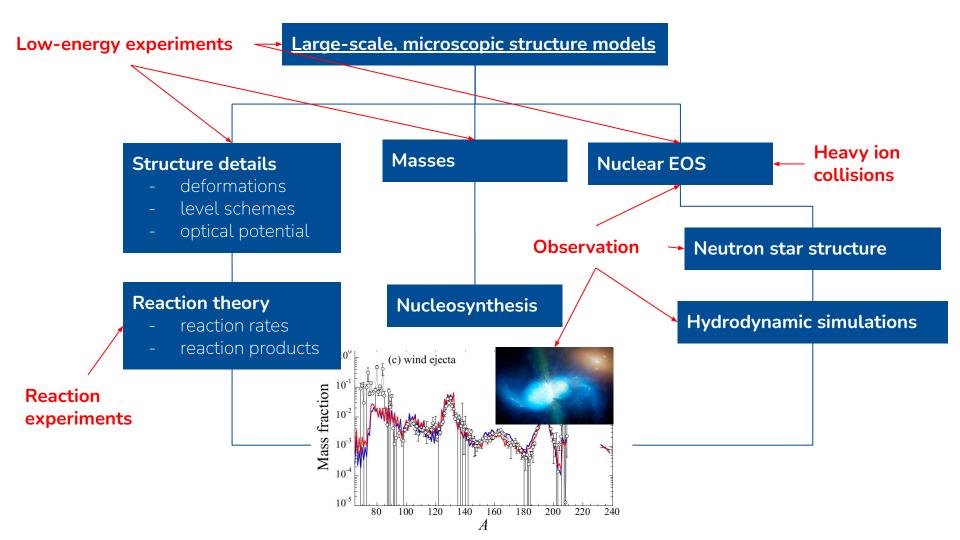

structure models


Nucleosynthesis

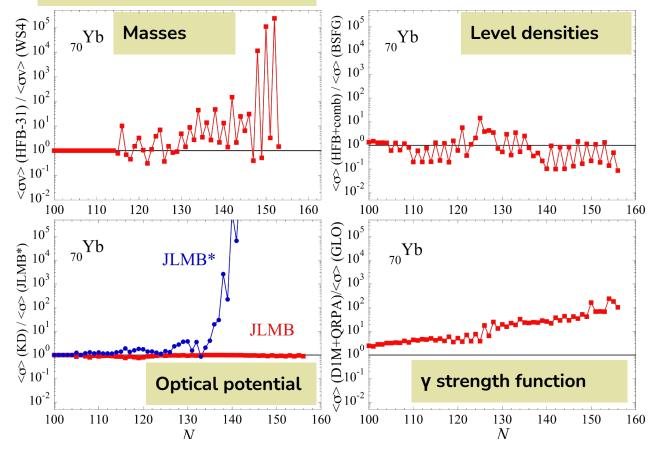

Large-scale, microscopic structure models


Nucleosynthesis

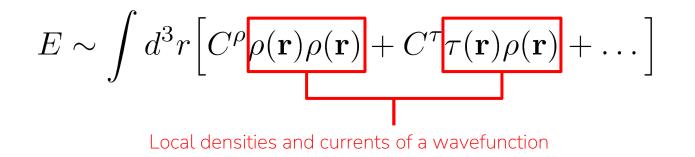


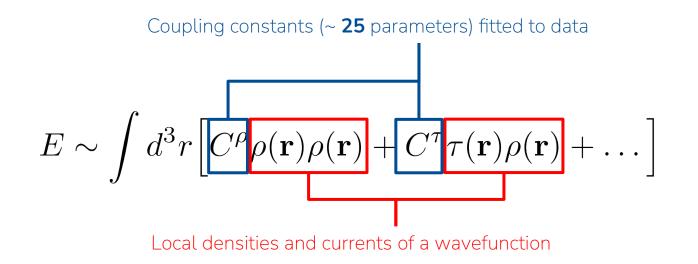


A

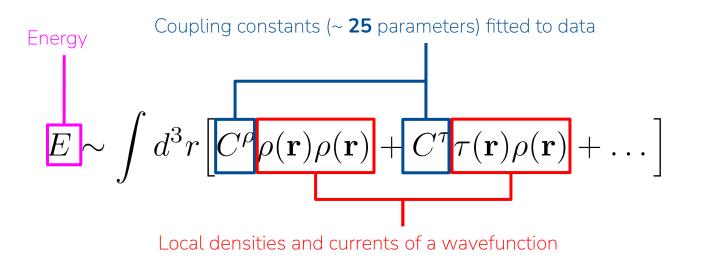


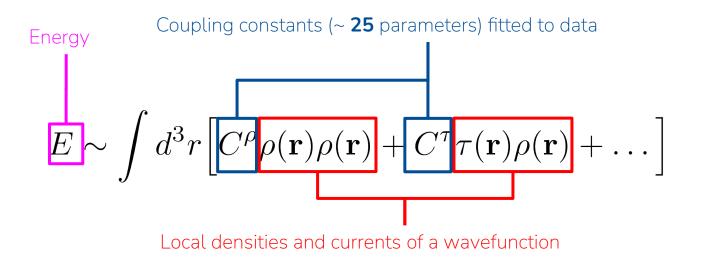
Models can make all the difference...

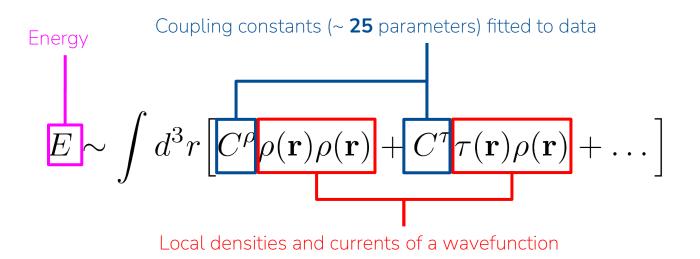

S. Goriely, EPJA 59, 16 (2023).


II. EDFs, deformation and the BSkG models

$$E \sim \int d^3r \Big[C^{\rho} \rho(\mathbf{r}) \rho(\mathbf{r}) + C^{\tau} \tau(\mathbf{r}) \rho(\mathbf{r}) + \dots \Big]$$







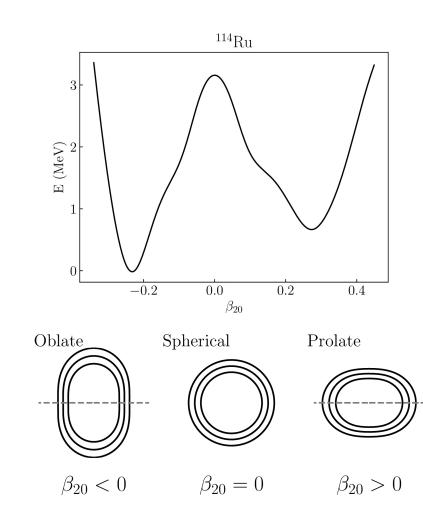
Strong points

- starts from effective interaction
- wave function with individual nucleons
- many observables accessible
- Feasible for **1000s** of nuclei

Strong points

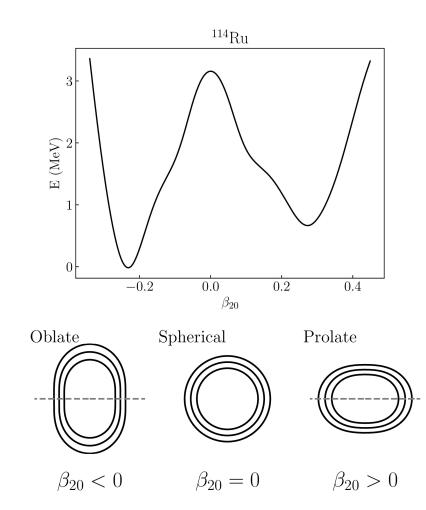
- starts from effective interaction
- wave function with individual nucleons
- many **observables** accessible
- Feasible for **1000s** of nuclei

How does experimental data enter this?

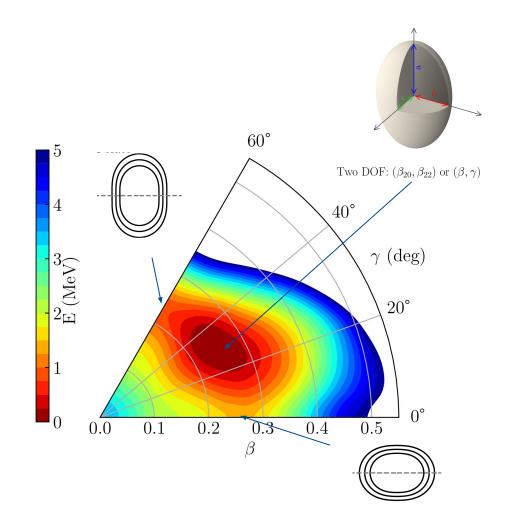

- 1. Selection and weighting of fitting data
- 2. Functional form of the EDF
- 3. Complexity of the wave function

- the many-body problem is complex
- look for solutions in a given variational space
 - \simeq independent-particle states
 - \simeq Hartree-Fock states
 - ≃ Hartree-Fock-Bogoliubov states
 - \simeq mean-field states
 - *≃*

- the many-body problem is complex
- look for solutions in a given variational space
 - ≃ independent-particle states
 - ≃ Hartree-Fock states
 - Hartree-Fock-Bogoliubov states
 - ≃ mean-field states
 - *≃*
- Symmetry breaking

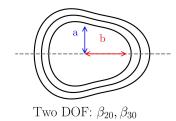

enlarges variational space grasps sizeable part of correlations still "in-class" wavefunctions loses connection to quantum numbers

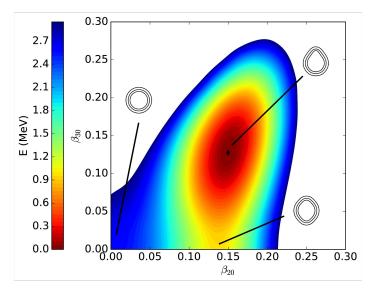
 \rightarrow symmetry-restoration, but expensive!


- the many-body problem is complex
- look for solutions in a given variational space
 - ≃ independent-particle states
 - \simeq Hartree-Fock states
 - Hartree-Fock-Bogoliubov states
 - \simeq mean-field states
 - *≃*
- Symmetry breaking
 - enlarges variational space grasps sizeable part of correlations still "in-class" wavefunctions loses connection to quantum numbers
 - \rightarrow symmetry-restoration, but expensive!

Symmetry broken	<u>leads to:</u>
Rotational symmetry	Multipole moments
Time-reversal	Angular momentum
Particle number	Pairing

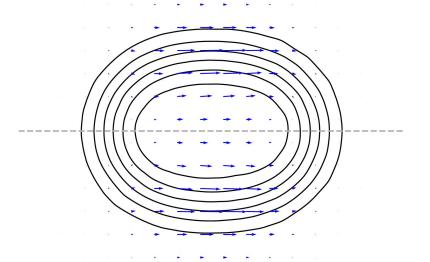
- the many-body problem is complex
- look for solutions in a given variational space
 - ≃ independent-particle states
 - Hartree-Fock states
 - Hartree-Fock-Bogoliubov states
 - ≃ mean-field states
 - *≃*
- Symmetry breaking
 - enlarges variational space grasps sizeable part of correlations still "in-class" wavefunctions loses connection to quantum numbers
 - \rightarrow symmetry-restoration, but expensive!


Symmetry broken	<u>leads to:</u>
Rotational symmetry	Multipole moments
Time-reversal	Angular momentum
Particle number	Pairing



- the many-body problem is complex
- look for solutions in a given variational space
 - ≃ independent-particle states
 - ≃ Hartree-Fock states
 - Hartree-Fock-Bogoliubov states
 - ≃ mean-field states
 - *≃*
- Symmetry breaking
 - enlarges variational space grasps sizeable part of correlations still "in-class" wavefunctions loses connection to quantum numbers
 - \rightarrow symmetry-restoration, but expensive!

Symmetry broken	leads to:
Rotational symmetry	Multipole moments
Time-reversal	Angular momentum
Particle number	Pairing


Reflection-asymmetric (RA)

- the many-body problem is complex
- look for solutions in a given variational space
 - ≃ independent-particle states
 - ≃ Hartree<u>-Fock states</u>
 - Hartree-Fock-Bogoliubov states
 - \simeq mean-field states
 - ~
- Symmetry breaking
 - enlarges variational space grasps sizeable part of correlations still "in-class" wavefunctions loses connection to quantum numbers
 - \rightarrow symmetry-restoration, but expensive!

Symmetry broken	<u>leads to:</u>
Rotational symmetry	Multipole moments
Time-reversal	Angular momentum
Particle number	Pairing

- the many-body problem is complex
- look for solutions in a given variational space
 - ≃ independent-particl<u>e states</u>
 - ≃ Hartree-Fock states
 - \simeq Hartree-Fock-Bogoliubov states
 - ≃ mean-field states
 - ~
- Symmetry breaking
 - enlarges variational space grasps sizeable part of correlations still "in-class" wavefunctions loses connection to quantum numbers
 - \rightarrow symmetry-restoration, but <u>expensive!</u>

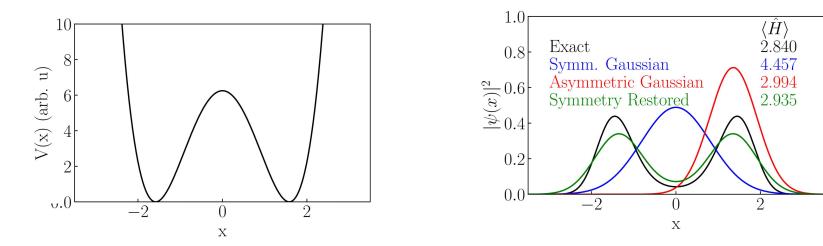
Symmetry broken

leads to:

Rotational symmetry

Time-reversal

Particle number


Multipole moments

Angular momentum

Pairing

All of these have experimental signatures!

A toy problem

- Gaussians as trial wavefunctions
- Symmetric trial state does badly
- Symmetry-broken solution works!
- but misses quantum numbers
- symmetry restoration solves this issue

As much **microscopic** physics as possible:

- simple but symmetry-breaking wave functions
- wave functions determined by eff. interaction
- generalized effective interactions
- all ingredients deduced from wave functions
- all observables deduced from wave functions

As much microscopic physics as possible:

- simple but symmetry-breaking wave functions
- wave functions determined by eff. interaction
- generalized effective interactions
- all ingredients deduced from wave functions
- all observables deduced from wave functions

As much **experimental data** as we can muster:

- ground state properties
 - 2457 masses of AME20
 - <u>884</u> charge radii
 - pairing properties
- fission properties
 - <u>45</u> primary & secondary barriers
 - <u>28</u> isomer excitation energies
- Infinite nuclear matter properties

As much microscopic physics as possible:

- simple but symmetry-breaking wave functions
- wave functions determined by eff. interaction
- generalized effective interactions
- all ingredients deduced from wave functions
- all observables deduced from wave functions

As much **experimental data** as we can muster:

- ground state properties
 - 2457 masses of AME20
 - <u>884</u> charge radii
 - pairing properties
- fission properties
 - <u>45</u> primary & secondary barriers
 - <u>28</u> isomer excitation energies
- Infinite nuclear matter properties

Yea	r	Name	Masses	RMS (MeV)
197	7		142	0.97
200	1	MSk1-7	1719	0.754
200	2	BSk1	1754	0.764
200	7	BSk14	2149	0.729
201	3	BSk27	2353	0.512
201	6	BSk32	2353	0.576

As much microscopic physics as possible:

- simple but symmetry-breaking wave functions
- wave functions determined by eff. interaction
- generalized effective interactions
- all ingredients deduced from wave functions
- all observables deduced from wave functions

As much experimental data as we can muster:

- ground state properties
 - 2457 masses of AME20
 - <u>884</u> charge radii
 - pairing properties
- fission properties
 - <u>45</u> primary & secondary barriers
 - **<u>28</u>** isomer excitation energies
- Infinite nuclear matter properties

Year	Name	Masses	RMS (MeV)
1977		142	0.97
2001	MSk1-7	1719	0.754
2002	BSk1	1754	0.764
2007	BSk14	2149	0.729
2013	BSk27	2353	0.512
2016	BSk32	2353	0.576
2021	BSk <mark>G</mark> 1	2408	0.741
2022	BSk <mark>G</mark> 2	2457	0.678

As much microscopic physics as possible:

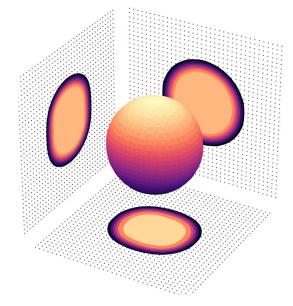
- simple but symmetry-breaking wave functions
- wave functions determined by eff. interaction
- generalized effective interactions
- all ingredients deduced from wave functions
- all observables deduced from wave functions

As much **experimental data** as we can muster:

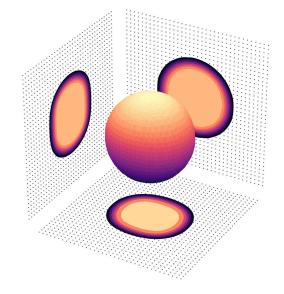
- ground state properties
 - 2457 masses of AME20
 - o <u>884</u> charge radii
 - pairing properties
- fission properties
 - <u>45</u> primary & secondary barriers
 - <u>28</u> isomer excitation energies
- Infinite nuclear matter properties

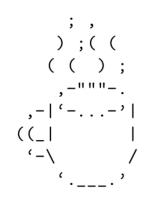
We focus on the masses, but not at the cost of everything else!

Year	Name	Masses	RMS (MeV)
1977		142	0.97
2001	MSk1-7	1719	0.754
2002	BSk1	1754	0.764
2007	BSk14	2149	0.729
2013	BSk27	2353	0.512
2016	BSk32	2353	0.576
2021	BSk <mark>G</mark> 1	2408	0.741
2022	BSk <mark>G</mark> 2	2457	0.678



Brussels-Skyrme-on-a-Grid: tools

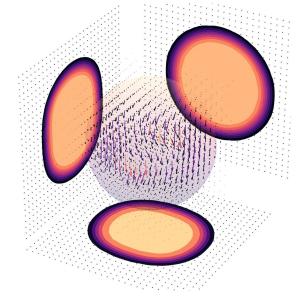



3D coordinate space

- shape-agnostic
- numerical accuracy

Brussels-Skyrme-on-a-Grid: tools

3D coordinate space


- shape-agnostic
- numerical accuracy

MOCCa

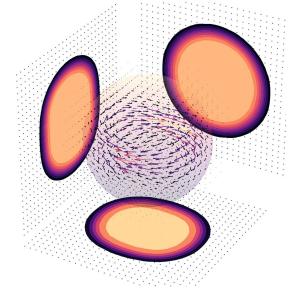
W. R. PhD Thesis, ULB (2016).

- efficient and robust
- symmetry choices à volonté

Brussels-Skyrme-on-a-Grid: tools

; ,);((((); , - " " " - . ,-| '-...-'| ((_' · _ \

3D coordinate space


- shape-agnostic
- numerical accuracy

MOCCa

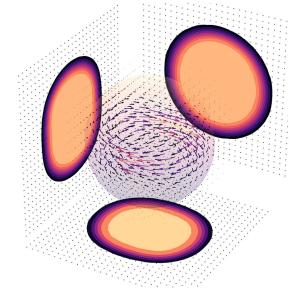
W. R. PhD Thesis, ULB (2016).

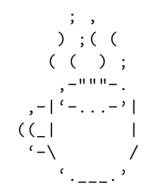
- efficient and robust
- symmetry choices à volonté

Brussels-Skyrme-on-a-Grid: tools

; ,);((((); , - " " " - . ,-| '-...-'| ((_ · _ \

3D coordinate space


- shape-agnostic
- numerical accuracy


MOCCa

W. R. PhD Thesis, ULB (2016).

- efficient and robust
- symmetry choices à volonté

Brussels-Skyrme-on-a-Grid: tools

3D coordinate space

- shape-agnostic
- numerical accuracy

MOCCa

W. R. PhD Thesis, ULB (2016).

- efficient and robust
- symmetry choices à volonté

ML

G. Scamps et al., EPJA 57, 333 (2021).

- emulate MOCCa
- parameter space exploration
- <u>No actual predictions!</u>

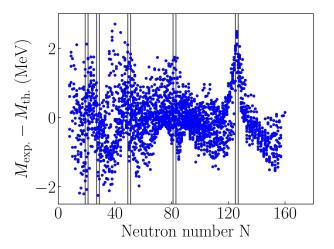
<u>BSkG1</u>

• full 3D representation

BSkG2

- full 3D representation
- time-reversal symmetry breaking
- fission included in the fit

σ (MeV)	BSkG1	BSkG2	HFB-14	FRLDM
2457 masses	0.741	0.678		
884 charge radii (fm)	0.027	0.027		
45 primary barriers	0.87	0.44		
45 secondary barriers	0.86	0.47		
28 Isomer energies	0.45	0.49		

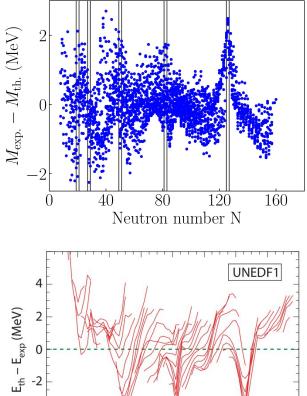

<u>BSkG1</u>

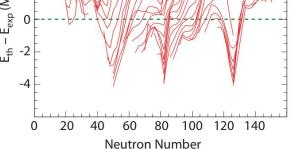
• full 3D representation

BSkG2

- full 3D representation
- time-reversal symmetry breaking
- fission included in the fit

σ (MeV)	BSkG1	BSkG2	HFB-14	FRLDM
2457 masses	0.741	0.678		
884 charge radii (fm)	0.027	0.027		
45 primary barriers	0.87	0.44		
45 secondary barriers	0.86	0.47		
28 Isomer energies	0.45	0.49		

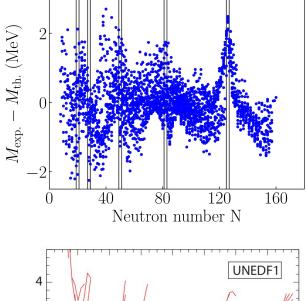

<u>BSkG1</u>

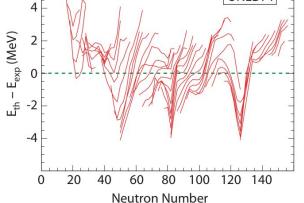

• full 3D representation

BSkG2

- full 3D representation
- time-reversal symmetry breaking
- fission included in the fit

σ (MeV)	BSkG1	BSkG2	HFB-14	FRLDM
2457 masses	0.741	0.678		
884 charge radii (fm)	0.027	0.027		
45 primary barriers	0.87	0.44		
45 secondary barriers	0.86	0.47		
28 Isomer energies	0.45	0.49		

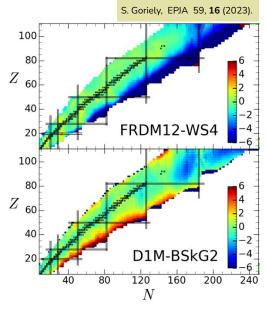

<u>BSkG1</u>


• full 3D representation

BSkG2

- full 3D representation
- time-reversal symmetry breaking
- fission included in the fit

σ (MeV)	BSkG1	BSkG2	HFB-14	FRLDM
2457 masses	0.741	0.678	0.729	0.808
884 charge radii (fm)	0.027	0.027	0.039	-
45 primary barriers	0.87	0.44	0.61	0.79
45 secondary barriers	0.86	0.47	0.70	1.35
28 Isomer energies	0.45	0.49	0.93	1.04


III. Why do we do these complex things?

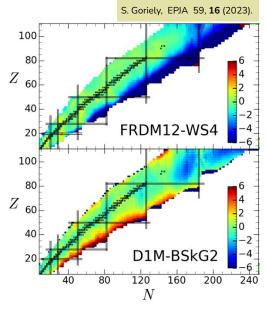
Mic-mac approaches?

✓ ✓ competitive in rms multiple observables

Machine learning?

Mic-mac approaches?

competitive in rms multiple observables

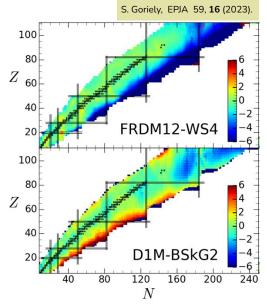


comparatively unstable no link mic. <-> mac.

Machine learning?

Mic-mac approaches?

competitive in rms multiple observables



comparatively unstable no link mic. <-> mac.

Machine learning?

Mic-mac approaches?

competitive in rms multiple observables

comparatively unstable no link mic. <-> mac.

Machine learning?

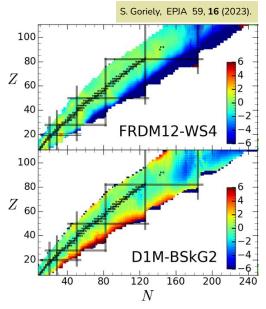
absolute champion ir
ridiculously easy

Ab Initio?

rms

 $E_{\rm AME20}|~({\rm MeV})$

 10^{1}


 10^{-3}

0

training (Z < 82)

Z > 82

validation (Z < 82)

Mic-mac approaches?

competitive in rms multiple observables

comparatively unstable no link mic. <-> mac.

Machine learning?

20

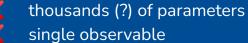
absolute champion in rms ridiculously easy

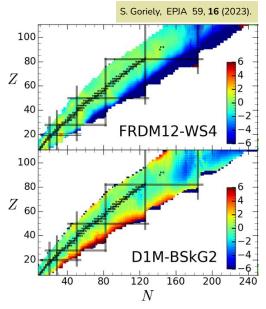
G. Grams, W.R. et al., in preparation

0.132 MeV

0.572 MeV

48 MeV


60


Proton Number Z

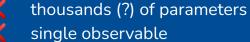
40

80

100

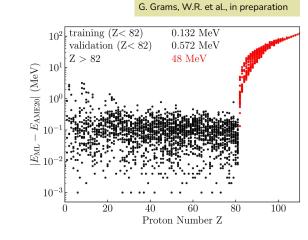
Mic-mac approaches?

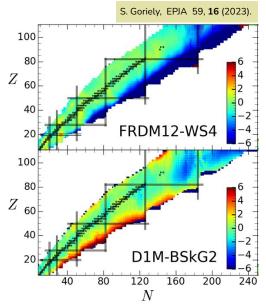
competitive in rms multiple observables



comparatively unstable no link mic. <-> mac.

Machine learning?

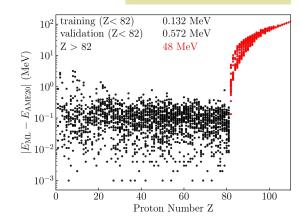

absolute champion in rms ridiculously easy

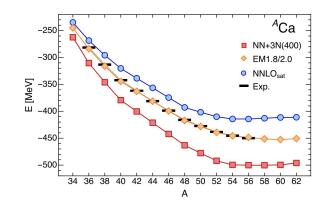


Ab Initio?

error quantification "truly" microscopic multiple observables

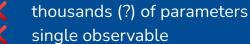
Mic-mac approaches?




competitive in rms multiple observables

comparatively unstable no link mic. <-> mac.

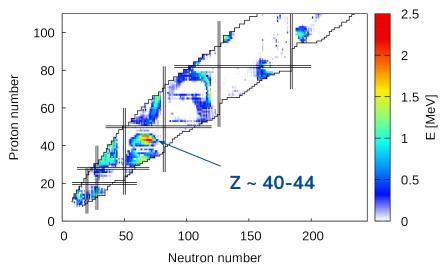
G. Grams, W.R. et al., in preparation



Machine learning?

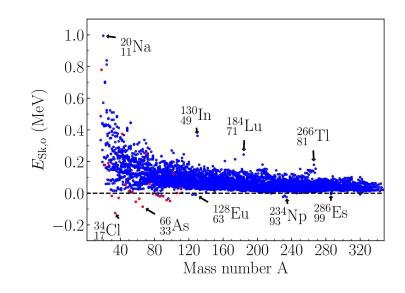
absolute champion in rms ridiculously easy

Ab Initio?



error quantification "truly" microscopic multiple observables

infeasible at scale <u>(for now)</u> not competitive on rms <u>(for now)</u>

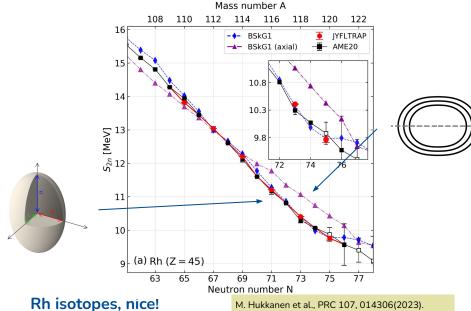

IV. Observables

Triaxial deformation

G. Scamps et al., EPJA 57, 333 (2021).

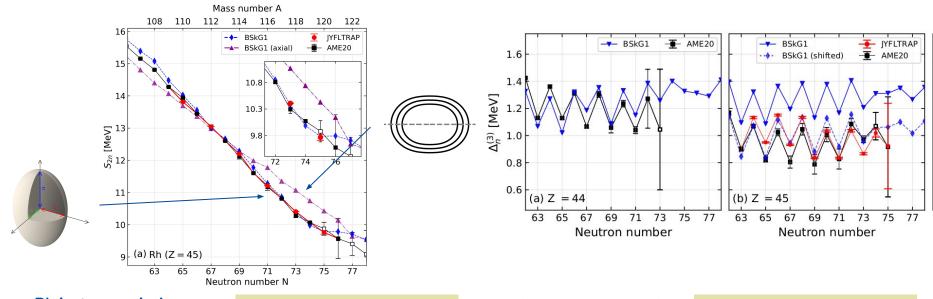
- most nuclei remain axial
- several regions of triaxiality
- large effects from 0.5-2 MeV.

Time-reversal symmetry breaking W.R. et al., EPJA 58, 246 (2022).


- reduces binding energy
- but small contribution...
- ... and grows smaller with system size

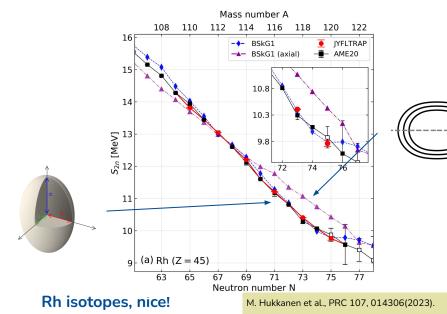
Rh isotopes, nice!

M. Hukkanen et al., PRC 107, 014306 (2023).

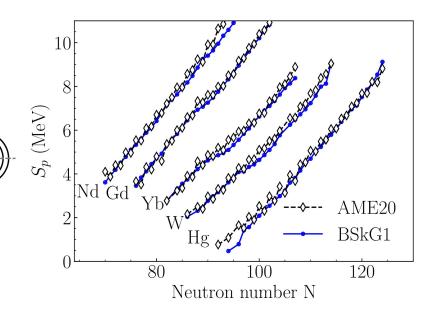

- masses of ^{110,112,114,116,118}Rh g.s. measured
- absolute masses within ~ 700 keV

- masses of ^{110,112,114,116,118}Rh g.s. measured
- absolute masses within ~ 700 keV
- clear preference for triaxial shapes
- (also cool stuff on the 112Rh isomer)

Rh isotopes, nice!

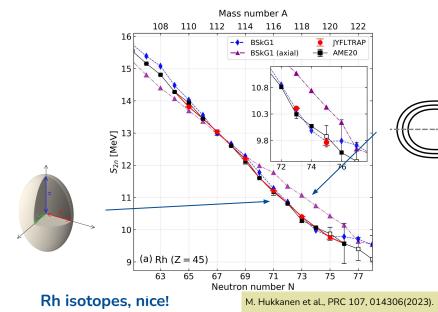

M. Hukkanen et al., PRC 107, 014306(2023).

- masses of ^{110,112,114,116,118}Rh g.s. measured
- absolute masses within ~ 700 keV
- clear preference for triaxial shapes
- (also cool stuff on the 112Rh isomer)


Rh isotopes, not-so-nice! W.R. et al

W.R. et al., arXiv:2211.03667 [nucl-th].

- total failure to reproduce $\Delta_{n}^{(3)}$
- ... but works in neighbouring chains!

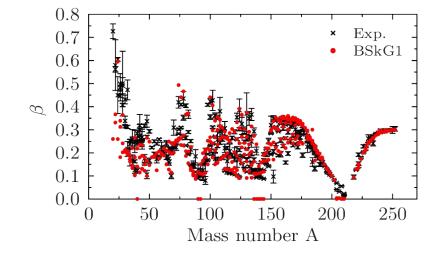

- masses of ^{110,112,114,116,118}Rh g.s. measured
- absolute masses within ~ 700 keV
- clear preference for triaxial shapes
- (also cool stuff on the 112Rh isomer)


Rh isotopes, not-so-nice!

W.R. et al., arXiv:2211.03667 [nucl-th].

- total failure to reproduce $\Delta^{(3)}_{n}$
- ... but works in neighbouring chains!
- is linked to interaction odd-n and odd-p?

- masses of ^{110,112,114,116,118}Rh g.s. measured
- absolute masses within ~ 700 keV
- clear preference for triaxial shapes
- (also cool stuff on the 112Rh isomer)

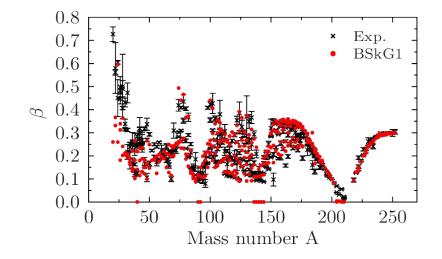


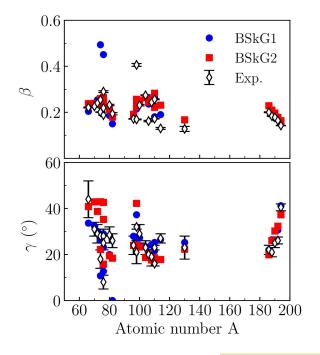
Rh isotopes, not-so-nice!

W.R. et al., arXiv:2211.03667 [nucl-th].

- total failure to reproduce $\Delta^{(3)}_{n}$
- ... but works in neighbouring chains!
- is linked to interaction odd-n and odd-p?

Observables: deformations



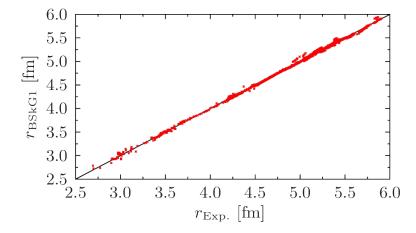

Global systematics

S. Raman, At. Data **78**(1), 1-128 (2001).

- deduced from B(E2) transitions
- good global reproduction
- particularly for heavy nuclei

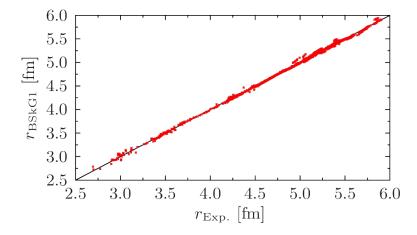
Observables: deformations

Global systematics

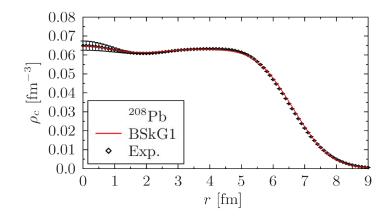

S. Raman, At. Data **78**(1), 1-128 (2001).

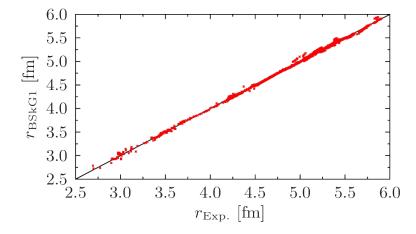
- deduced from B(E2) transitions
- good global reproduction
- particularly for heavy nuclei

Triaxial deformation?

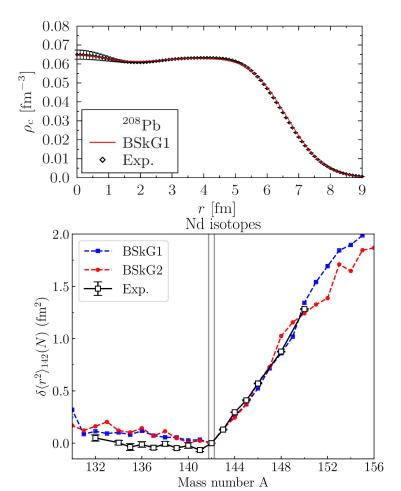

Thanks to M. Zielinska!

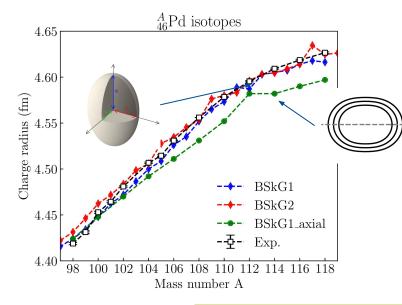
- <u>ALL</u> available COULEX data
- very good agreement (within model limitations)


Systematics and details of charge densities


rms (charge radii) ~ 0.027 fm

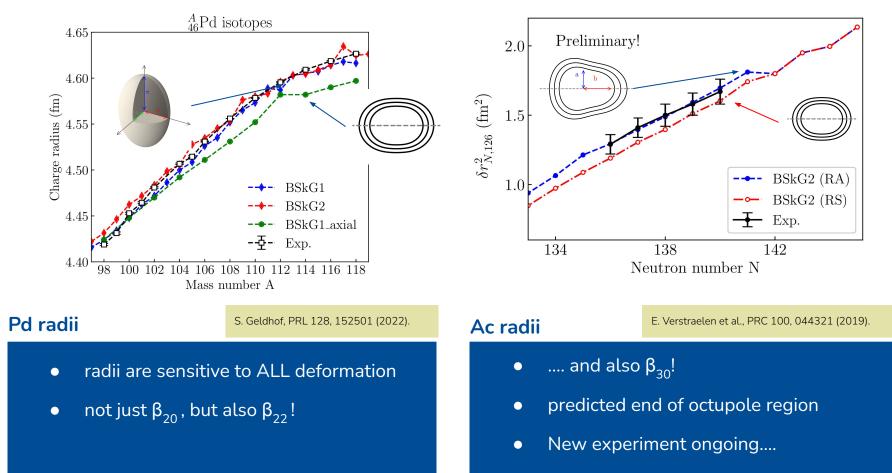
Systematics and details of charge densities

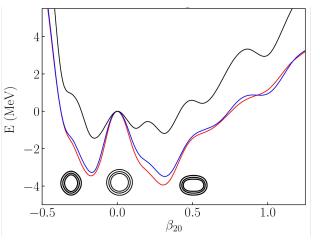

- rms (charge radii) ~ 0.027 fm
- complete charge densities



Systematics and details of charge densities

- rms (charge radii) ~ 0.027 fm
- complete charge densities
- dramatic evolution with particle number linked to deformation!



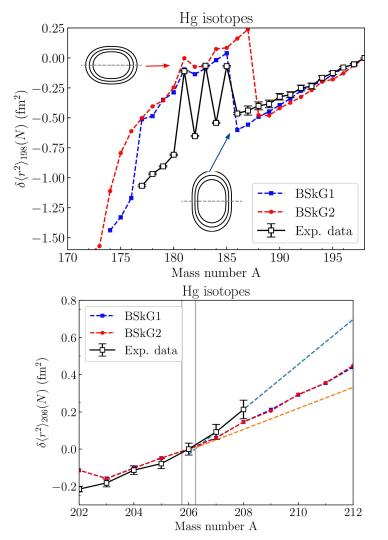


Pd radii

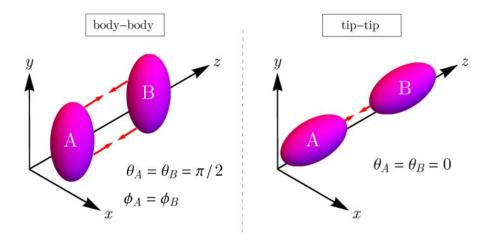
S. Geldhof, PRL 128, 152501 (2022).

- radii are sensitive to ALL deformation
- not just β_{20} , but also β_{22} !

Hg isotopes are hard!


S. Sels et al., Phys. Rev. C 99 (2019).

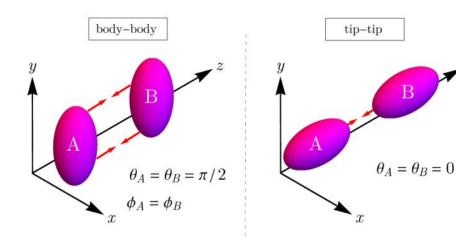
Staggering:

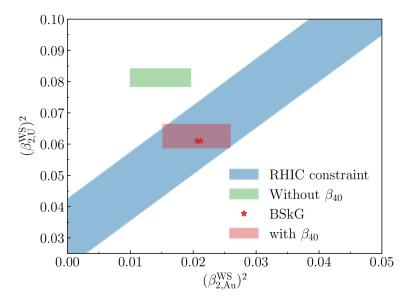

- rapid shape change
- multiple, competing minima

Kink at N=126

- no obvious interpretation
- also exists at N=20,50,82!
- my bet: single-particle structure

Observables: densities

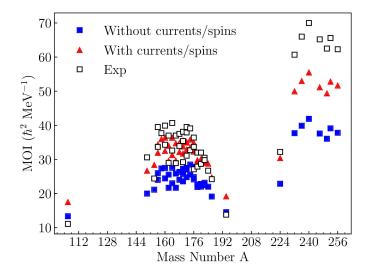



Heavy ion collisions

- shape of the quark-gluon plasma depends on nuclear density
- deformation imprints on the particles detected!

Observables: densities

Heavy ion collisions

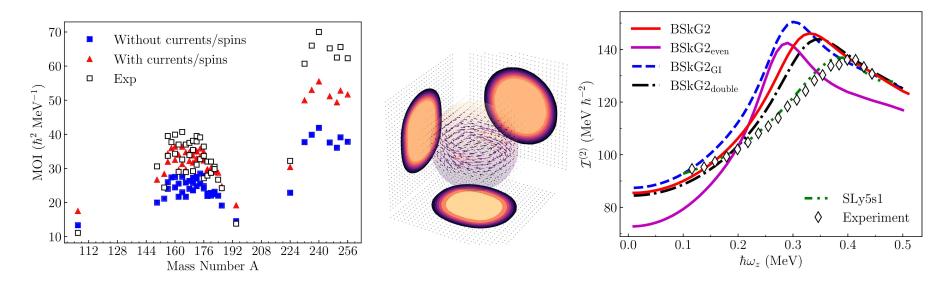

- shape of the quark-gluon plasma depends on nuclear density
- deformation imprints on the particles detected!

Exciting times!

W. R. et al., arXiv:2302.13617 (2023).

- a priori sensitive to ALL aspects
 - exotic multipole moments
 - matter (!) radii
- Au+Au collisions and U+U collisions can only be described by including β_{40}

Observables: rotational properties


Rotational response of nuclei

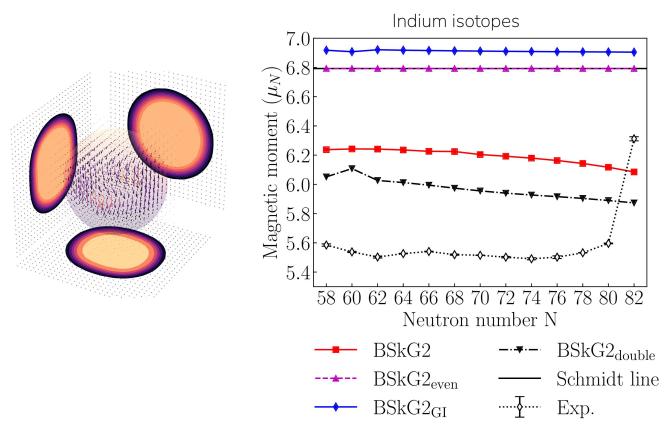
- currents and spins contribute to MOI
 - medium-heavy nuclei

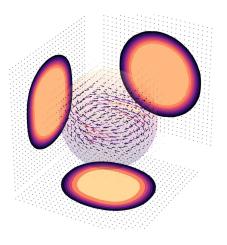
actinides

Observables: rotational properties

Rotational response of nuclei

- currents and spins contribute to MOI
 - medium-heavy nuclei




actinides

MOI evolve along rotational bands

- top of the peak = "alignment"
- curve sensitive to currents and spins!

Observables: magnetic moments

A. R. Vernon et al., Nature 607, 260 (2022). J. Eberz et al., NPA 464, 9 (1987).

Observables: g.s. spins and parities

Correct spin-parity?	odd-Z	odd-N	odd-odd
Spherical	82%	68%	33%
Transitional	70%	63%	13%
Axial deformation	25%	40%	19%
Triaxial deformation	28%	27%	15%

Perhaps the most basic observable....

- g.s. spin and parities require symmetry restoration
- something "quick-n-dirty"
- J^{π} enters reaction rate calculations

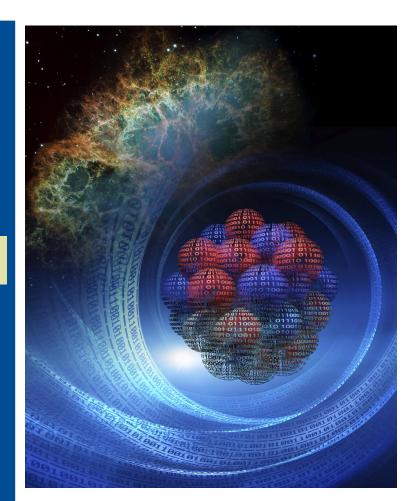
..... but this is "as good" as other models

- **all** other EDF approaches
- mic-mac approaches
- See:

L. Bonneau et al., PRC 76, 024320 (2007)

V. Conclusion, problems and outlook

Conclusion


We build <u>large-scale</u>, <u>microscopic</u> models of nuclear structure for applications.

<u>Microscopic =</u> with simple wave functions yet complex symmetry breaking. <u>Large-scale =</u> predictions for thousands of nuclei and many observables.

BSkG1 and BSkG2 are the latest models

- full three-dimensional representation of nuclei
- includes triaxial deformation!
- and **time-reversal** symmetry breaking => new observables!
- data available to all!

BSkG2: W. Ryssens et al. EPJA 58, 246 (2022). **BSkG1:** G. Scamps et al., EPJA 57, 333 (2021).

Available:

- 1. BSkG2, fission: W. Ryssens et al., arXiv:2302.03097 [nucl-th].
- 2. BSkG2, g.s. properties: W. Ryssens et al. EPJA 58, 246 (2022).
- 3. BSkG1, g.s. properties: G. Scamps et al., EPJA 57, 333 (2021).

Coming soon(-ish) on http://www.astro.ulb.ac.be/bruslib/

Regular Article - Theoretical Physics Published: 16 December 2021

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape

Guillaume Scamps [⊡], Stephane Goriely, Erik Olsen, Michael Bender & Wouter Ryssens *The European Physical Journal A* 57, Article number: 333 (2021) | <u>Cite this article</u> 474 Accesses | 13 Citations | 3 Altmetric | <u>Metrics</u>

This article has been updated

Abstract

1 Introduction

The modelling of nuclear reactions and radioactive decays in astrophysical or earth-based conditions requires detailed knowledge of the masses of essentially all nuclei. Microscopic mass models based on nuclear energy density functionals (EDFs) can be descriptive and used to provide this information. The concept of intrinsic symmetry breaking is central to the predictive power of EDF approaches, yet is generally not exploited to the utmost by mass models because of the computational demands of adjusting up to about two dozen parameters to thousands of nuclear masses. We report on a first step to bridge the gap between what is presently feasible for studies of individual nuclei and large-scale models: we present a new Skyrme-EDF-based model that was adjusted using a three-dimensional coordinate-space representation, for the first time allowing for both axial and triaxial deformations during the adjustment process. To compensate for the substantial increase in computational cost brought by the latter, we have employed a committee of multilayer neural networks to model the objective function in parameter space and guide us towards the overall best fit. The resulting mass model BSkG1 is computed with the EDF model independently of the neural network. It yields a root mean square (rms) deviation on the 2457 known masses of 741 keV and an rms deviation on the 884 measured charge radii of 0.024 fm.

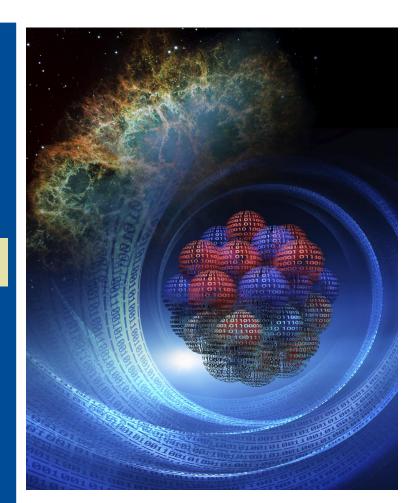
Working on a manuscript? Avoid the most common Ea mistakes and prepare your manuscript for journal editors. Learn more -> Sections Figures Abstract Introduction Ingredients of the mass model Model adjustment using neural networks The BSkG1 parameterization Conclusions and outlook Data Availability Statement Change history Notes References Acknowledgements Author information Supplementary Information Rights and permissions About this article

1 Z N 2 8 8	Hexp[HeV]	Hth[MeV]	Err[HeV]	Ebind[MeV]	beta20	beta22	beta2	Erot[MeV]	avgap uv(n) avgap_uv(p)	rc[fn]	rc exp[fm]	rc_err[fn]	MOI[hbar*2/He	V] par(p)	par(n)
2 8 8 3 8 9	-4.7370 -0.8890	-4.1901 -0.9512	-0.5469 0.1422	-127.0704 -131.9829	0.000	-0.000	0.000 0.355	0.0000	0.0000	0.0000	2.7266 2.7858	2.6991 2.6932	-0.0275 -0.0926	0.0000	+	-
4 8 10 5 8 11	-0.7830	-1.6022	0.8192	-140.6252	0.178	0.050	0.192	2.4585	1.8518 1.3963	0.0000	2.7388	2.7726	0.0338	0.3389	+	+
6 8 12	3.7960	3.1735	0.6225	-151.9921	0.183	0.065	0.205	2.6628	1.7800	0,0000	2.7451			0.5241		÷
7 8 13 8 8 14	8.0620 9.2839	8.6529 10.4998	-0.5909 -1.2168	-154.5841 -169.8885	8.159	0.003	0.159	1.4948 2.4018	0.8333 1.2385	0.0000	2.7403			0.3898	1	-
9 8 15 10 8 16	14.6210 18.5000	16.8851 29.5378	-2.1841 -2.8370	-162.5745 -166.9139	8.000	0.000	0.000	0.0000	8.0000 8.0000	0.0000	2.7454 2.7669			0.0000 0.4630		
11 8 17	27.3290	28,9738	-1.6448	-166.5485	8.892	0.105	0.175	1.2988	0.0000	0.0000	2.7882			0.2858		-
12 8 18 13 8 19	34.6610	35.3884 44.5578	-8.6474	-168.2852 -167.1079	8.150	0.050	0.165	1.7523	1.2426	0.0000	2.8052			0.4905		
14 9 8 15 9 9	1.9520	2.2935	-0.3415 1.0119	-127.8752 -138.3789	8.364	8.002	0.364	2.4104	1.2562	0.0000	2.9285			0.0822		+
16 9 10	-1.4870	-3.1865	1.6995	-149,4978	8.259	8.865	0.275	2,7934	1.7727	0,0000	2.8434	2.8976	0.0542	0.4522	÷	÷
17 9 11 18 9 12	-0.0170 -0.0480	-1.5180	1.5010 1.3982	-155.9006 -163.9002	0.489 8.289	0.002 0.084	0.489 0.304	3.2871 3.2772	0.0000	0.0000	2.8913 2.8493			0.2465 0.7712	-	+
19 9 13 20 9 14	2.7930 3.2850	2.0138	0.7792	-168.5115	0.345	0.055	0.354 0.279	2.4933 3.1372	0.0000	0.0000	2.8623			1.1644	+	+
21 9 15	7.5450	8.1004	-8.6154	-178.4076	8.147	9.133	0.239	1.8838	0.0000	0.0000	2.8559			0.1405		1
22 9 16 23 9 17	11.3340	11.1995 18.3797	0.1345	-183.5397 -184.4309	8.160	0.060	0.181	2.0188	8.6849 8.8989	0.0000	2.8555 2.8775			0.4569	1	1
24 9 18 25 9 19	25.1330	23.5368	1.5970	-187.3459 -185.9398	8.210	8.859	8.226	2.4134	1.2867	0.0000	2.9817			0.6688		
26 9 28	40.1500	38.0305	2.1195	-188.9948	8.158	0.003	8.198	1.9242	1.2665	0.0000	2.9302			0.5259	+	+
27 9 21 28 10 8	5.3180	47.1059 4.3718	0.9462	-187.9889 -133.0851	8.402	0.003	0.402	2.0090	1.0768	0.0000 1.8801	2.9536 2.9497	2.9714	0.0217	0.3698	:	
29 10 9 30 10 10	1.7520	-0.1333 -6.1786	1.8853	-145.6615 -159.7782	8.265	0.065	0.289	2.8855 3.4116	0.0000	1.8316	2.9384	3.0082	0.0698	0.4394 0.8201		
31 10 11			0.1234	-167.5262	8.479	8.889			8.8989	1.4667	2.9573	2.9595	0.0122		÷	÷
32 10 12 33 10 13	-8.0250 -5.1549	-6.8244 -5.3781	-1.2006 0.2241	-176.5666	0.310	0.083	0.331 0.363	3.5051 3.3549	1.5459	1.6700	2.9294 2.9403	2.9525 2.9184	0.0231	1.4351 1.8282	-	+
34 10 14 35 10 15	-5.9520 -2.8360	-5.3020	-0.6500 0.1663	-191.1868 -195.1584	0.241 0.215	0.069	0.260	3.2992 3.0053	1.0790	1.6624	2.9196	2.9007	-0.0189 0.0044	1.2786	+	+
36 10 16	0.4810	0.4184 6.2116	0.0525	-201.6091	0.160	0.060	0.181	2.6321	0.8412	1.7149	2.9256	2.9251	-0.0005	0.8546	+	÷
37 10 17 38 10 18 39 10 19	7.0510 11.3000	6.2116 10.4928 17.9316	8.8394 8.8072 8.4584	-283.8872 -287.6773	8.192	8.000	0.192	2.1195 2.7443	0.0000	1.6357	2.9453 2.9680	2.9642	-0.0038	0.5457	-	-
39 10 19 40 10 20	18.4000	17.9316	8.4584	-288.3858 -211.2428	8.280	8.898	8.288	2.1428	8.7286	1.5669	2.9876			0.6574	:	:
41 10 21	31.1820	31.2781	-8.8961	-211.1060	8.245	0.005	0.245	2.0828	8.8844	1.5125	3.0162			0.6319		
42 10 22 43 10 23		37.5498 46.0178		-212.9055 -212.5897	8.215 8.392	0.067	0.235 0.392	2.6272	1.3669 0.8328	1.5138	3.0289			1.6846	:	-
44 11 8 45 11 9	12.9290 6.8500	12.3223 5.3716	0.6067 1.4784	-132.4226	0.054	0.102	0.167	1.6694 3.0642	0.0000	1.4141	3.0313 3.0615	2.9718	-0.0897	0.2937		
		-2.9834	-8.1016	-162.9718	8.489	8.883	8.489		1.3587	0.0000	3.8343	3.0135	-8.9297	1.1297	÷	÷
	-5.1810	-8.2693 -9.5882	3.8883	-177.2282 -186.5384	8.570	0.001	0.570	3.8176 3.1638	0.0000	0.0000	3.0615 3.0442	2.9852	-0.0763 -0.0596	0.4655	:	-
49 11 13 58 11 14	-8.4180	-9.0454 -9.7858	0.6274	-194.1469	0.460	0.069	0.470	3.6105	0.0000	0.0000	3.0398	2.9735	-0.0663	1.3909	+	+
51 11 15	-6.8510	-7.2132	0.3522	-288.4574	0.355	0.065	0.368	3.3054	0.0000	0.0000	3.0251	2.9928	-0.0323	0.4585	1	1
52 11 16 53 11 17	-5.5180	-5.7986 -1.3869	0.2885 0.3989	-215.1141 -218.7738	8.215	0.000	8.242	2.9663 2.5545	1.8298	0.9234	3.0003	3.0135 3.0400	0.0133	0.9102	-	-
54 11 18	2,6389	1.7953 7.8788	0.8837	-223.6619	8.310	8.859	0.321	3.1652 3.1618	1.4265	0.0000	3.0517 3.0597	3.0922 3.1100	0.0283	1.2823		+
56 11 20	8.4750 12.2460	11.9322	0.5962 0.3138	-225.6507 -229.6686	8.350	0.053	0.414 0.357	2.8842	0.9215 1.5311	0.0000	3.8859	3.1100	0.0283	1.6665	:	+
57 11 21 58 11 22	18.6400 23.7800	18.5697 23.4149	0.0703	-231.1024 -234.3285	8.570	0.053	0.575	3.2654	0.0000	0.0000	3.1614 3.1369			2.2225		1
59 11 23	31.6800	30.4369	1.2431	-235.3779	8.411	0.001	0.411	2.7833	0.0000	0.0000	3.1479			0.8698	+	
61 11 25		36.5526 44.9174		-237.3335 -237.0400	8.461 8.456	8.849	0.465	2.7262 2.2789	1.2039 0.2259	0.0000	3.1717 3.1827			3.2194 4.6050		
62 11 26 63 11 27		51.3995		-238.6292 -237.8889	8.442	8.059	0.450	2.6801 2.7426	1.8647 8.9023	0.0000	3.1872 3.1887			3.4525 3.8136	:	+
64 12 8	17.4780	16.5685	0.9095	.135 4644	8.201	0.075	0.227	2.7749	8.0000	1.7925	3.1206			0.5521	÷	+
65 12 9 66 12 10	10.9040	0.7238	-1.1230	-150.9762 -167.4525	0.350	0.078	0.317	3.4120	1.5221	1.5412	3.8944 3.8825			0.7672 1.6174	-	-
67 12 11 68 12 12	-5.4740	-5.7646	0.2905 -1.4818	-182.0115	8.599	8.867	0.509	3.3209	0.0000	1.0704	3.1117 3.1420	3.0570	-0.0850	1.7839	+	+
69 12 13	-13.1930	-13.5949	8.4019	-285.9844	8.360	8.110	0.392	3.8541	8.8889	1.3904	3.0765	3.0284	-0.0481	2.1268	÷	÷
70 12 14 71 12 15	-16.2150 -14.5870	-14.9807 -14.3558	-1.2343 -8.2312	-215.4415 -222.8888	0.267 8.241	0.148 0.105	0.339 0.283	3.5612 3.6248	0.0000	1.5820	3.0573	3.0337	-0.0336	2.0362 0.9578		+
72 12 16 73 12 17	-15.0200 -10.6120	-13.8893 -10.4543	-1.1307 -0.1577	-230.4928 -235.1291	0.200	0.095	0.241	3.4527	1.1182	1.5914	3.0579			1.3398		
74 12 18	-8.8810	-8.5842	-0.3768	-241.2504	0.189	0.069	0.213	2.9698	1.3487	1.5254	3.0505			1.4453	÷	÷
75 12 19 76 12 20	-3.1220 -0.8290	-3.2515 -0.3484	0.1295 -0.4885	-244.0689 -249.2372	0.165	0.050	0.180	2.1602 2.9181	0.6025 1.4900	1.5403 1.4876	3.0953 3.1088			0.7560		-
77 12 21 78 12 22	4.9630 8.3239	5.9926 9.7918	-1.8295 -1.4588	-250.9675 -255.2396	8.223 8.372	0.064	0.241	2.7879 3.0002	1.8737	1.4109 0.9851	3.1286			1.2982 3.4412	+	
79 12 23	15.6400	16 4728	-8.8328	-256.6300	8.370	0.000	0.370	2.0699	0.0000	0.9605	3.1839			2.0132		1
80 12 24 81 12 25	20.3800 28.2110	28.8904	-0.5104 -0.0223	-260.2836 -261.0121	8.479	0.057	0.485	2.9903	1.2820	0.0000	3.2337			4.8542 5.4832	:	
82 12 26 83 12 27		33.8556		-263.4611 -263.4103	8.447	8.856	0.455	2.8882	1.0553	0.0000	3.2478			5.1001	+	+
84 12 28		48,6288	-	-264,8385	8.444	0.063	0.453	2.6728	8.9249	0,0000	3.2657			5,6178	÷	÷
85 12 29 86 13 8		57.3936 26.2637		-264.1371 -133.0570	0.302 0.181	0.130 0.001	0.354	2.5930 1.5794	0.7479 0.0000	0.8676 0.9543	3.2418 3.1722			5.1169 0.4874	+	÷
87 13 9 88 13 10	6.7480	17.0349 6.5772	0.1788	-150.3571 -168.8862	0.369 8.343	0.062	0.379 0.367	2.4846 3.2202	0.0000	0.0000	3.1696	1.1		1.3760	+	:
	-0.0490	-9.8824	0.8334	-184.4171	0.465	0.070	0.475	3.5894	0.0000	0.0000	3.1618				1	1
98 13 12 91 13 13	-8.9160	-9.1454 -14.1105	8.2294	-200.7515 -211.9079	8.365	8.110	8.397	3.7359	1.2693	0.0000	3.1332			2.2548	*	+
92 13 14 93 13 15	-17.1970 -16.8510	-17.5885	0.3835 8.2247	-225.3292 -232.8956	8.307	8.894	0.335	3.8273	8.9111 8.8080	0.0000	3.1108	3.0610	-0.0498	1.9314	+	+
94 13 16	-18.2080	-17.8319	+8.3761	-241.7232	8.247	8.898	0.283	3.3949	1.1084	0.0000	3.1178			1.8421		
95 13 17 96 13 18	-15.8640 -14.9510	-15.3973 -14.8907	-0.4567 -0.0583	-247.3599 -254.9246	8.228	0.020	0.239	2.2456 3.2659	0.0000 1.4076	0.0000	3.1109 3.1410			1.0099	:	:
	-11.0990	-10.5909 -9.0643	-0.5001 0.5673	-258.6961 -265.2409	8.200	0.000	0.200	2.1829	0.0097	0.0000	3.1390			0.7882	+	+
99 13 21	-2,9989	-3,7943	0.7963	-268,0423	8.275	8.867	0.291	2,9838	1.1820	0,0000	3.1814			1.7456	:	
100 13 22 101 13 23	-0.2240 5.9500	-1.1635 4.4965	0.9395	-273.4827 -275.8941	0.284 0.342	0.071	0.302	3.1212 2.5252	1.5357 0.3205	0.0000	3.1951 3.2162			2.5278	-	+
102 13 24	9.8100	8.2217	1.5883	-280.2402	0.331	0.082	0.351	3.2275 2.7368	1.3300	0.0000	3.2326			3.4873	+	+
104 13 26		14.6549 19.4976 27.1874		-285.1069	8.389	8.869	0.389		8.8888	0.0000	3.2552 3.2528			4.3431 4.1523	-	÷
105 13 27 106 13 28		27.1874		-285.5685	8.358	8.850	0.380	2.7533	0.6320	0.0000	3.2735			3.1638		1
107 13 29		40.5826		-288.2359 -289.9454	8.285	8.107	0.333 0.322 0.255	2.6837	8.6335	0.0000	3.2739			2,9104	÷	1
109 13 31		55.4675		-289,4937	8.248	0.107 0.142	8.319	2.0671	0.9251 0.0000	0.0000	3.2763 3.2925			4.2210 5.1489	:	
110 14 9 111 14 10	10.7450	22.2155 11.1321	.0.3871	-152.4642 -171.6190	8.273	0.066	0.288 0.279	3.0989 3.3129	0.0000	1.2560	3.2272 3.1881			0.7449		:
112 14 11	10.7450 3.8270 -7.1410	2.8585	8.9585	-187.9639	8.499	8.976	8.414	4.0714	8.8999		3.2157			1.1937	:	:
113 14 12 114 14 13	-12.3859	-6.0241 -13.0554	-1.1169 8.6784	-284.9178 -220.0204	8.278	0.111 0.095	0.312	3.5252 3.9528	1.4441	0.8952	3.1641 3.1720			1.8914	:	-
115 14 14	-21.4930 -21.8950	-20.4244	-1.8586	-235.4608	8.182	0.223	0.364	2.9857	0.0000	0.0000	3.1850	3.1224	-0.0626	2.3320	+	+
117 14 16	-24.4330	-22.8283	-1.6047	-254.0073	0.181	0.075	0.231	3.0446	1.8441	0.7670	3.1417	3.1336	-0.0081	1.5368	+	+
310 14 37	02.0406	23 6240	1.4541	160.7761	0.105	0.075	0.310	3 6836	0.0505	8-T076	3.1635			3.8343		

Conclusion

We build <u>large-scale</u>, <u>microscopic</u> models of nuclear structure for applications.

<u>Microscopic =</u> with simple wave functions yet complex symmetry breaking. <u>Large-scale =</u> predictions for thousands of nuclei and many observables.


BSkG1 and BSkG2 are the latest state-of-the art models entries

- full three-dimensional representation of nuclei
- includes triaxial deformation !
- **time-reversal** symmetry breaking => new observables!
- data available to all!

BSkG2: W. Ryssens et al. EPJA 58, 246 (2022). **BSkG1:** G. Scamps et al., EPJA 57, 333 (2021).

In our project, I hope you want to help with:

- 1. providing data for our parameter fits
- 2. telling us where wave functions need refining
- 3. helping us refine the form of the EDF

Problems: what we cannot do (yet)!

- 1. **"Single-particle**" properties are deficient
 - a. g.s. spins
 - b. details of charge radii
 - c. magnetic moments
- 2. The **EDF form** is phenomenological:
 - a. no systematic improvement possible
 - b. no connection to the nucleon-nucleon interaction
 - c. no way to provide systematic errors
- 3. We have no predictions for thousands of nuclei:
 - a. β -decay rates
 - b. level-schemes + transition rates
 - c. magnetic moments

Problems: what we cannot do (yet)!

- 1. **"Single-particle**" properties are deficient
 - a. g.s. spins
 - b. details of charge radii
 - c. magnetic moments
- 2. The **EDF form** is phenomenological:
 - a. no systematic improvement possible
 - b. no connection to the nucleon-nucleon interaction
 - c. no way to provide systematic errors
- 3. We have no systematic predictions for
 - a. β-decay
 - b. level-schemes / transition rates / half-lives
 - c. magnetic moments

We need to work on:

- 1. extendable, non-empirical EDF forms.
- 2. beyond-mean-field at the scale of the nuclear chart.

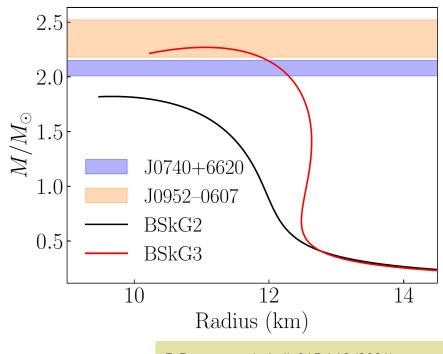
Problems: what we cannot do (yet)!

- 1. **"Single-particle**" properties are deficient
 - a. g.s. spins
 - b. details of charge radii
 - c. magnetic moments
- 2. The **EDF form** is phenomenological:
 - a. no systematic improvement possible
 - b. no connection to the nucleon-nucleon interaction
 - c. no way to provide **systematic** errors
- 3. We have no systematic predictions for
 - a. β-decay
 - b. level-schemes / transition rates / half-lives
 - c. magnetic moments

We need to work on:

- 1. extendable, non-empirical EDF forms.
- 2. beyond-mean-field at the scale of the nuclear chart.

THINKING...


Outlook

<u>BSkG3</u>

- compatible with the existence of heavy pulsars
- without deteriorating structure properties of BSkG1/2

Databases based on BSkG2:

- nuclear level densities
- fission properties
- details of (charge) densities

E. Fonseca *et al.*, ApJL 915, L12 (2021)R. W. Roman *et al.*, ApJL 934, L17 (2022).

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ M. Hukkanen M. Stryjczyk A. Kankainen

G. Giacalone UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Brookhaven[®]

National Laboratory

S. Grévy

M. Bender

J. Bonnard

P. Ascher

B. Schenke

C. Shen

W

UNIVERSITY of

WASHINGTON

S. Sels E. Verstraelen T. Cocolios P. Van Duppen

G. Scamps

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

- M. Bender L Bonnard

W G. Scamps UNIVERSITY of WASHINGTON

M. Hukkanen M. Stryjczyk A. Kankainen

G. Giacalone UNIVERSITÄT HEIDELBERG

P. Ascher S. Grévy

KU LEUVEN

S. Sels E. Verstraelen T. Cocolios P. Van Duppen

Brookhaven[®] National Laboratory

B. Schenke C. Shen

..... the computing time!

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

- JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ
- M. Hukkanen M. Stryjczyk A. Kankainen

G. Giacalone UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

P. Ascher S. Grévy

B. Schenke

M. Bender

J. Bonnard

W

UNIVERSITY of

WASHINGTON

S. Sels E. Verstraelen T. Cocolios P. Van Duppen

G. Scamps

C. Shen

..... the computing time!

..... the funding!

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

- JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ
- M. Hukkanen M. Stryjczyk A. Kankainen

G. Giacalone UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

P. Ascher S. Grévy

M. Bender

J. Bonnard

KU LEUVEN

W

UNIVERSITY of

WASHINGTON

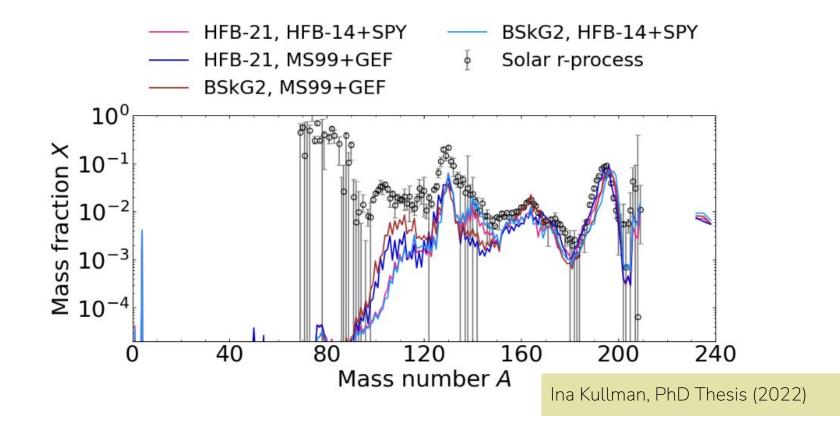
S. Sels E. Verstraelen T. Cocolios P. Van Duppen

G. Scamps

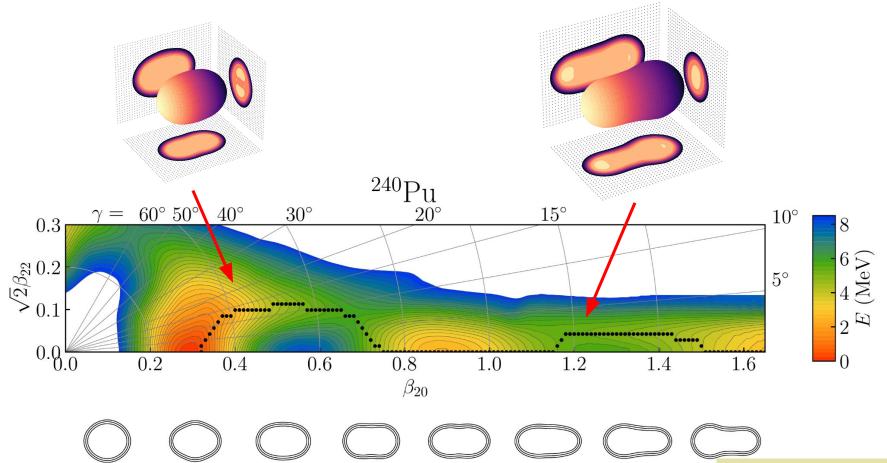
alone

B. Schenke C. Shen

..... the computing time!

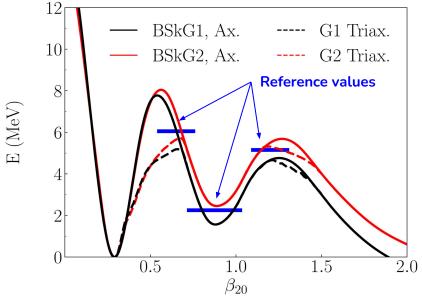


..... the funding!

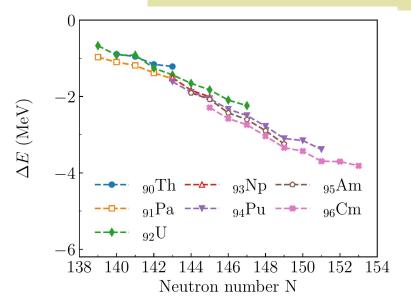


..... your attention!

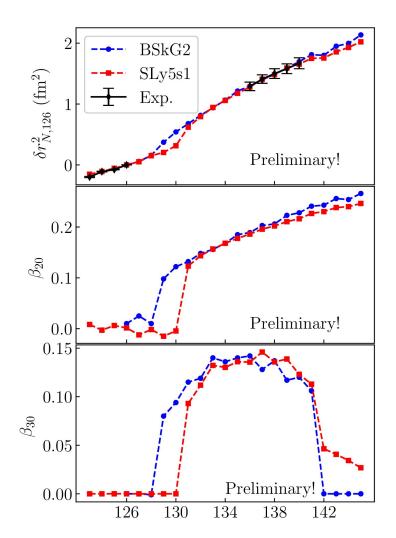
Bonus!



Observables: fission


Observables: fission

R. Capote et al., Nuclear Data Sheets 110, 3107 (2009).


Triaxial deformation for 240Pu

- Large effect on inner barrier
- No effect on isomers
- Modest effect on outer barrier

Triaxial deformation for actinides

- Larger effects with growing N
- reminder: σ (fission) < 0.5 MeV
- what other regions does it affect?

