

Laser spectroscopy in radioactive ion beam facilities - Recent highlights

ISOL-FRANCE V, 21.3.2023

Mikael Reponen

- Laser spectroscopy status overview
- RIB Facilities with (planned) laser infrastructure
- Laser spectroscopy
 - Possibilities
 - Approaches, techniques
- Testing nuclear theories with optical measurements
- Near future outlook
 - New frontiers in the heavy region
 - Towards higher-resolution in-source RIS
 - Ultra-high precision frontier and radioactive molecules
- Final remarks

- Much progress since the 2016 review article:
 - Collinear RIS established
 - Laser spectroscopy of heavy elements and actinides
 - Testing nuclear theory with optical results
 - Radioactive molecules
 - Emerging on ultra-high precision and sensitivity techniques.

- Much progress since the 2016 review article:
 - Pd-Sn region
 - Access to N=50 and N=82
 - Ca and K chains
 - Work towards N=126
 - Actinides
 - Towards heavy elements

- Gaps still persist in the nuclear chart
 - Below Ni (*Z*=28)
 - Tc (Z=43) to Pd (Z=46)
 - Rare -earth elements
 - Ir-Pt region
 - Superheavy elements

[©] Alex Domaina https://commons.wikimedia.org/wiki/File:World_map_with_points.svg

Laser spectroscopy

 Nuclear properties are mapped to the atomic structure.

Ŵ

- Isotopes have a finite size leading to isotope shifts → nuclear size
- Orbiting charges and intrinsic nucleon moments lead to nuclear magnetic moments → valence configuration, wf purity
- Charge can assume non-spherical charge distribution, and thus electric moments → deformation, shape, collectivity
- Spin, radii, moments be extracted without assuming a nuclear model!

Courtesy of K. Flanagar

Laser spectroscopy technical

- Laser spectroscopy: Drive a transition and monitor a fluorescence/ion signal/etc. as a function of laser frequency
- Transition wavelengths: 10-2000 nm
 - Practically range: 200-1000 nm
- Isotope shifts, hyperfine splitting :
 - MHz to many GHz
- Transition @400 nm = 750 THz
- Laser spectroscopy inherits the richness of atomic structure.
 - Efficiency, applicability, etc. are element-specific.

Charge radii from isotope shift measurements General approach

Laser Spectroscopy possibilities

Exotic nuclei at the limits of stability

Expected yields <<1 atom/second Lifetimes <1s Relatively large isobar contamination

Resolution:

Very little known => low resolution ok As low as 10 MHz / precision ~ 100 kHz possible.

Technique :

Fast due to short half-lives Highly selective due to isobars Low yield requires a high sensitivity Lower resolution can be acceptable

Near Stability NucleiExpected yields >108 atom/secondLifetimes >>1sHigh purityResolution/precision frontier:kHz/mHz

<u>Technique</u>: New physics requires high resolution sensitivity is not critical The method can be slow

(Typical) Laser spectroscopy approaches

- In-source laser spectroscopy
 - Hot cavity
 - Gas cell
- Collinear laser spectroscopy
 - Fluorescence detection
 - Resonance ionization
 - Beta-NMR/collisional ionization/state-selective CEC
- Methods tailed to specific cases
 - Spectroscopy on trapped ion/atom
 - Techniques superseded by more modern ones...

Very efficient, low production rates Low resolution, limited element choice (New techniques to improve resolution)

A bit less efficient High resolution, wide element choice

More niche, specific cases/applications Search for new physics

Method: Laser resonance ionization

- Each element have their unique atomic structure -"fingerprint".
- Multiple laser beams overlapped with atoms to stepwise excite and ionize
 - Efficient! As high as >50%, typically a few %
- A great method for sensitive laser spectroscopy
 - Resolution depends highly environment dependent.

Method: Collinear laser spectroscopy

- In-flight laser spectroscopy with fast atomic or ionic beams
 - Typically, ~20-40 keV => Doppler compression!
 - CLS of confined ions
 - MR-ToF
 - Relativistic CLS in storage rings.
- Resolution down to the natural linewidth
- Typically, fluorescence detection
 - Either from a ground state or metastable state
 - Optical pumping to prepare a suitable state!
- Collinear RIS + ion detection a recent breakthrough.

Experiments + theory Benchmarking models with optical measurements

Testing and developing nuclear theory

Nuclear charge radius from isotope shift measurements

- Local variation in charge radii requires precise nuclear structure calculations
- Microscopical effects impact the radius:
 - shell structure
 - deformation
 - pairing
 - proximity to continuum, etc.
- For example: A sudden change in the systematics of the radius can signal a transition between, e.g., deformed and spherical systems.

Recent DFT test cases DFT: Nuclear charge radius

- Compared to Skyrme EDF, Fayans EDF has a more complicated structure.
 - Includes density dependence and gradient term.
- Recent Fayans functionals add gradient term on pairing energy density.
 - To reproduces Ca chain radii OES
- Recently applied for example in
 - Ni

- Pd
- Few more charge-radii cases to follow...

S. Malbrunot-Ettenauer et al, Phys. Rev. Lett. 128, 022502 (2022) JYU SINCE 1863. 3.4.2023

Challenging nuclear theory

Little explored regions of the nuclear chart

- In-source RIS in the immediate vicinity of ¹⁰⁰Sn
 - Crossing the N=50 in the
 - Approaching N=Z line
- Signal rates of 1 per 5 minutes

Lit. (Low	Optica /-	l Data <mark>High-</mark>		Z=50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
res.		res.	In 96	In 97	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
		Cd 94	Cd 95	Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
	Ag 92	Ag 93	Ag 94 37 ms	Ag 95 1.76 s	Ag 96 4.44 s	Ag 97 25.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
	Pd 91	Pd 92 1.1 s	Pd 93 1.15 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
N 50											

Challenging nuclear theory Little explored regions of the nuclear chart

- Spectra for ¹⁰⁴⁻⁹⁶Ag obtained using ¹⁴N(⁹²Mo, 2pxn) Ag
 - Data ^{96,95}Ag using ⁴⁰Ca(^{58/60}Ni, pxn) Ag
- Virtually a background-free measurements
- Very sharp kink observed at N=50 beyond current DFT models. More data needed to refine error bar.
 - Points towards a need for symmetry-restored multi-reference EDF
- Magnetic moments near *N=Z* an important test for theory

Challenging nuclear theory Exotic isotopes with minute yields

RILIS:

- Linewidth: order of GHz
 - Source of broadening: Doppler effect due to high temperature
 - Spectral properties of the laser are matched to this linewidth
- Ions transported to one of several possible detection stations
 - Decay spectroscopy: tag on characteristic radiation
 - Mass spectrometry: single out one isotope from other isobars using its mass
 - FLEXIBILITY! Tailor the detection to the isotope and beam at hand

Challenging nuclear theory Exotic isotopes with minute yields

Shape staggering in Hg and Bi

- Significant challenge for nuclear theory
- Magnetic moments are key to pin down nuclear configuration to aid the interpretation!

Marsh, B.A., Day Goodacre, T., Sels, S. *et al.* Characterization of the shape-staggering effect in mercury nuclei. *Nat. Phys* **14**, 1163–1167 (2018) T. Day Goodacre, PRL **126**, 032502 (2021)

arzakh, A., et al. Large Shape Staggering in Neutron-Deficient Bi isotopes, Phys. Rev. Lett. 127, 192501 (2021)

Development of nuclear interactions

Pushing methods to short lifetimes and low yields with collinear methods

Study of K as a test to DFT and NNLO_{sat/go} Chiral Proton beam **Effective Field Theory CRIS at ISOLDE:** Target Collinear = doppler-free 00 000 RIS = versatile, efficient HRS 0 0 **Challenges:** Õ 0 \cap 08 ISCOOL Atom Low yields, Large isobaric contamination Resonanlty ionized ion Non-resonanlty ionized ion

Courtesy of R. P. de Groote

Development of nuclear interactions

Pushing methods to short lifetimes and low yields with collinear methods

- Theoretical calculations
 - DFT framework (Fy(Δr,HFB) EDF),
 - ab-initio coupled-cluster calculations with NNLO_{sat} and $\Delta NNLO_{GO}$
- Fy(Δ r,HFB) reproduces the kink and trend after N = 28
 - However, too strong odd-even effect.
- Ab-initio results show more realistic odd-even effect, but the trend after N = 28 is not so well reproduced
 - No signature of a magic shell gap at N = 32
- NNLO_{sat} and newer NNLO_{GO} may work better close to stability
 - Also observed in Ca (CLS measurement)

Nuclei at the limits of existence

- Proton-rich Ca:
 - Treatment of proton superfluid correlations in the presence of low-lying continuum states is vital.
 - Charge radii of very proton-rich nuclei
 - Important for pinning down pairing interactions

A. J. Miller et al, Nature Physics 15, 432-436 (2019)

 Magnetic moments are a very sensitive probe to nuclear structure

¹³¹In

- Indium isotopes were a textbook case on single particle behavior.
- An abrupt change observed at N=48,
 - Time-symmetry-breaking mean fields is essential in DFT
 - No need for effective
- More data required near the indium chain
 - Data on silver isotopes under analysis past the N=50 shell closure

A. Vernon, Nature 607, 260-265 (2022)

Near future outlook: New frontiers in the heavy region

Reaching new frontiers Laser Spectroscopy in heavy elements

RADRIS method tailored to actinides produced by fusion with lowest rates:

- Nobelium first laser spectroscopy beyond Z=100
 - yield as low as 0.05 atoms / second
- Isotope shift allowed determining changes in mean-square charge radii around N = 152
- Magnetic dipole and electric quadrupole moment of ^{253,255}No obtained from hyperfine splitting

H. Backe et al. Eur. Phys. J. D, 45 (1) (2007), 99 F. Lautenschläger et al. Nucl. Instrum. Meth. B, 383 (2016),115

Near future outlook: Towards higher-resolution in-source RIS

PI-LIST Perpendicularly Illuminated Laser Ion Source and Trap

"Sub-Doppler" hot cavity in-source spectroscopy

- Crossed atom beam / laser geometry in LIST structure
- Selection of reduced Doppler ensemble in laser intersection volume
- Suitable narrow-band laser

Resolution improvement by >1 order of magnitude

In-jet RIS High resolution with in-source efficiency

- In-source laser spectroscopy provides the ultimate sensitivity, at the cost of resolution
 - Exception: in-gas jet laser spectroscopy promises high resolution with in-source efficiency
 - Take ions out of the high-pressure environment, cool through supersonic expansion
- Combination with ultra-selective and efficient detection techniques provides access to the most exotic isotopes

<u>lų</u>

Near future outlook: Ultra-high precision frontier and radioactive molecules

- Overview of hyperfine structure was a simplification.
 - Hyperfine anomaly: ratio of atomic A and the nuclear moment is *not* a
 - Higher-order nuclear moments: there is physics *beyond* the quadrupole
- Measuring these effects typically requires new precisions techniques
 - Laser-RF double resonance is a competitive option
 - Radiofrequency excitation within ground-state hyperfine manifold
 - Other is spectroscopy of ultra-cold atoms in a MOT

Technique Laser-RF double resonance

50 Ω

Signal generator

- Optical resonance is not scanned
 - Radiofrequency excitation within ground-state hyperfine manifold
 - Optical 'amplifier' of RF resonance
- Magnetic moments in ⁴⁵Sc

atoms

ions

to vacuum pump

а

RAPTOR "RIS And Purification Traps for Optimised spectroscopy"

- "RIS And Purification Traps for Optimised spectroscopy"
- Collinear laser resonance ionization spectroscopy
 - Collinear geometry at a few kV beam energy yields ~300 MHz linewidth
 - Laser resonance ionization provides high efficiency
 - Using Penning trap as ultimate background-removal device

Laser-RF double resonance capability! Bi or In possible cases.

First High-resolution resonances!!

Radioactive Molecules

New Era of Precision (Atomic, Molecular, Nuclear) Physics

- A promise of sensitivity not only to nuclear structure, but also to fundamental symmetries
- Heavy radioactive molecules are potential probes for physics beyond the standard model
- Parity and time reversal violating effects are significantly enhanced in molecules compared to atomic systems

Courtesy of R. P. de Groote, R F Garcia Ruiz

35

- Nuclear chart has been explored extensively with optical techniques, but **Challenges remain**:
 - the most exotic, most short-lived, challenging chemistry, complex or unknown atomic structure, ...
- Combination of RIS with ultra-selective and efficient detection techniques provides access to the most exotic isotopes
- Collinear RIS has been established as vital tool for probing nuclear structure at the limits of existence
 - And it has fostered new avenues such as **radioactive molecules** and **precisions techniques**
- Collaboration between experimentalists and theorists has been extremely fruitful It is vital to expand this collaboration
- Sharing technical expertise is very productive
 - Collinear-RIS, gas cell and gas jet techniques, Laser techniques such as injection-locking.
- Exploration of different facilities opens new frontiers
 - e.g. IGISOL@JYFL and KISS@RIKEN: access refractory isotopes, MNT reactions
 - e.g. NSCL/FRIB: fragmentation reactions
 - e.g. GANIL/ S3LEB: High yields near ¹⁰⁰Sn
- Embracing new frontiers, with precision comes additional information!
 - Measurement schemes and setups tailored to specific goals are very worthwhile
 - Information extracted via Radioactive molecules can perhaps compete with collider data?

Acknowledgements

- R.P de Groote
- K. Flanagan
- M. Kortelainen
- J. Dobaczewski
- R. F Garcia Ruiz
- Y. Hirayama
- M. Block
- Reinhard Heinke
- W. Rattanasakuldilok

KU Leuven **U.** Manchester JYFL U. York MIT **KEK WNSC** GS **CERN** JYFL/UCL