DE LA RECHERCHE À L'INDUSTRIE

ANR AGENCE NATIONALE DE LA RECHERCHE

The SEASON decay station

Spectroscopy Electron Alpha in Silicon bOx couNter

Damien THISSE CEA IRFU (Saclay) On behalf of the SEASON collaboration

Workshop ISOL-France 22-03-2023

The study of (super)-heavy nuclei

Laboratory to probe the limit of nuclear stability

The study of (super)-heavy nuclei

Laboratory to probe the limit of nuclear stability

Unstability increased by the growing Coulombian repulsion But shell effects play a stabilizing role

DE LA RECHERCHE À L'INDUSTR

The study of (super)-heavy nuclei

Laboratory to probe the limit of nuclear stability

Unstability increased by the growing Coulombian repulsion But shell effects play a stabilizing role

Region of strong deformation (in particular octupole)

DE LA RECHERCHE À L'INDUSTR

The study of (super)-heavy nuclei

DE LA RECHERCHE À L'INDUSTRI

DE LA RECHERCHE À L'INDUSTRI

SEASON objectives

Goal 1: counting the laser ionized atoms to perform laser ionization spectroscopy

• Need good detection efficiency for α (5 – 12 MeV) and electrons (20 – 600 keV)

Compact configuration Si detectors (BB7 from Micron) ✓ Thickness 1 mm

Active area 64 x 64 mm²

 α detection efficiency $\mathbf{80\%}$ electron detection efficiency $\mathbf{50\%}$

From Geant4 simulation (work of T. Goigoux and E. Rey-herme)

Alpha detection efficiency (simulated)

Electron detection efficiency (simulated)

Goal 1: counting the laser ionized atoms to perform laser ionization spectroscopy

• Need good detection efficiency for α (5 – 12 MeV) and electrons (20 – 600 keV)

electron detection efficiency 50%

Compact configuration Si detectors (BB7 from Micron) ✓ Thickness 1 mm

Active area 64 x 64 mm²

From Geant4 simulation (work of T. Goigoux and E. Rey-herme)

<u>Goal 2</u>: perform α , electron, γ decay spectroscopy

• Need good energy resolution and avoid summing effects

Energy resolution (FWHM)	15 keV (α from 5 MeV to 12 MeV) 7 keV (electron from 20 keV to 600 keV)
Energy threshold	20 keV
Time resolution (FWHM)	20 ns

Si detectors (BB7 from Micron)

- Thickness: 1 mm
- Active area: 64 x 64 mm²
- ✓ Number of strips: 32 x 32
- ✓ Strip pitch: 2 mm
- High resistivity (purer material)
- Dead layer: 50 nm
- ✓ R&D on implantation foils

In order to measure both alpha and electrons with the best energy resolution


```
DE LA RECHERCHE À L'INDUSTRIE
```

First tests at CEA of the full coupling

Planning for SEASON

Reception of the mechanics planned in September-October First mounting will be performed at CEA-Saclay (end of 2023)

Reception of the mechanics planned in September-October First mounting will be performed at CEA-Saclay (end of 2023)

Electronic integration and offline tests scheduled for the beginning of 2024

Planning for SEASON

Reception of the mechanics planned in September-October First mounting will be performed at CEA-Saclay (end of 2023)

Electronic integration and offline tests scheduled for the beginning of 2024

SEASON@IGISOL : Spring 2024 Online commissioning Campaign of experiments

Commissioning of VADER setup (Oct. 2022)

Reaction ²³²Th(p, xn) Study of Pa isotopes decay Same implantation foils than SEASON

A. Raggio et al., to be published in NIM B

SEASON will be commissioned in the same conditions than VADER

Planning for SEASON

Reception of the mechanics planned in September-October First mounting will be performed at CEA-Saclay (end of 2023)

Electronic integration and offline tests scheduled for the beginning of 2024

SEASON@IGISOL : Spring 2024 Online commissioning Campaign of experiments

SEASON will then be placed at S³-LEB

Commissioning of VADER setup (Oct. 2022)

Reaction ²³²Th(p, xn) Study of Pa isotopes decay Same implantation foils than SEASON

A. Raggio et al., to be published in NIM B

SEASON will be commissioned in the same conditions than VADER

DE LA RECHERCHE À L'INDUSTRIE

Thank you for your attention

Florent Bouyjou, Sandrine Cazaux, Thomas Chaminade, <u>Olivier Cloué</u>, Philippe Daniel-Thomas, Antoine Drouart, Alexis Gaget, Olivier Gevin, Thomas Goigoux, Jean-Christophe Guillard, Hervé Le Provost, Jorge Mendes-Ribeiro, Gilles Minier, Julien Noury, Yann Reinert, Johan Relland, Emmanuel Rey-herme, Arnaud Roger, Barbara Sulignano, Christophe Theisen, Damien Thisse, <u>Marine Vandebrouck</u>

DE LA RECHERCHE À L'INDUSTRI

Hit pattern of tunnel and front detectors

