

CRIS at **ISOLDE** : Recent results and future projects

Louis Lalanne on behalf of the CRIS collaboration

ISOL France 21/03/2023

CRIS @ ISOLDE

CRIS @ ISOLDE

CRIS @ ISOLDE

CRIS : Collinear Resonance Ionization Spectroscopy

Measuring the HFS allows access to:

- Nuclear spin
- Dipole magnetic moment
- Electrical quadrupole moment
- Mean-squared charge radii
- ✓ High sensitivity : few 10 ions/s
- ✓ High resolution : ~ 100 MHz
- ✓ High versality : Nuclear structure, atomic structure, molecular spec., negative ions

2022 experimental campaign

2022 experimental campaign: Al

- N=20 Island of Inversion: Strongly mixed and deformed ground state configuration
- This level of deformation is evidenced in the charge radii
- ³³Al located between strongly deformed ³²Mg and spherical
 ³⁴Si Transition into the Island of inversion?

- Large increase in charge radii towards the N = 20 shell closure is observed for Na and Mg
- Previous measurements of Al radii display an unexpected decrease in $\delta(r^2)$ between ³¹Al and ³²Al

- First measurement of charge radii across N=20 in the vicinity of the IoI
- ²⁷⁻³¹Al in agreement with previous measurements
- $^{32-34}$ Al upwards trend towards and crossing N = 20

More statistic is needed to reduce uncertainties and to clarify the increase in charge radii

 \rightarrow second Al run to come in 2023

2022 experimental campaign: Ag

- Isotopic chain spans N = 50 and N = 82
- Many isomers with unclear structure
- Investigate validity of single particle behaviour
 - Single particle behaviour challenged in indium^[1]
 - What is the effect of the two extra proton holes?

50		8															82																
¹⁰⁰ Sn ₅+	101Sn	¹⁰² Sn _{β⁺}	¹⁰³ Sn _{8*}	¹⁰⁴ Sn ₅+	¹⁰⁵ Sn _{β⁺}	¹⁰⁸ Sn _{β⁺}	¹⁰⁷ Sn _{β⁺}	¹⁰⁸ Sn ₅∗	¹⁰⁹ Sn ₅+	¹¹⁰ Sn e- capture	111Sn	112Sn 28+	¹¹³ Sn _{β⁺}	¹¹⁴ Sn sadie	¹¹⁵ SN Stable	¹¹⁶ Sn _{Sabio}	¹¹⁷ Sn ^{Stable}	¹¹⁸ Sn satie	¹¹⁹ Sn sadie	120Sn Stable	¹²¹ Sn ⊮	¹²² Sn 28-	¹²³ Sn ⊮	¹²⁴ Sn 28-	¹²⁵ Sn ⊮	¹²⁸ Sn ⊮	¹²⁷ Sn ₽	¹²⁸ Sn ⊮	129Sn	¹³⁰ Sn ⊮	¹³¹ Sn ₽	¹³² Sn ⊮	50
99 In 8*	¹⁰⁰ In _{β*}	¹⁰¹ In ⊮	¹⁰² In ^{β+}	¹⁰³ n ₅⁺	¹⁰⁴ In _{β⁺}	¹⁰⁵ n ₅∗	¹⁰⁸ In _{β⁺}	¹⁰⁷ In _{β⁺}	¹⁰⁸ n ₅+	¹⁰⁹ In ₅+	¹¹⁰ In _{β⁺}	111 n e- capture	¹¹² In _{в+}	¹¹³ N Stable	¹¹⁴ In ⊮	¹¹⁵ In ₽	¹¹⁶ In ₽	¹¹⁷ In ⊮	¹¹⁸ n ⊮	¹¹⁹ In ⊮	¹²⁰ In ⊮	¹²¹ In ⊮	¹²² In ⊮	¹²³ In ⊮	¹²⁴ In ⊮	¹²⁵ n ⊮	¹²⁸ In ⊮	¹²⁷ In ₽	¹²⁸ In ⊮	¹²⁹ In ⊮	¹³⁰ In ⊮	¹³¹ In ⊮	
⁹⁸ Cd	99Cd	¹⁰⁰ Cd _{β⁺}	¹⁰¹ Cd _{β*}	¹⁰² Cd _{β⁺}	¹⁰³ Сd	¹⁰⁴ Cd _{β⁺}	¹⁰⁵ Cd _{β+}	108Cd	¹⁰⁷ Cd _{β⁺}	¹⁰⁸ Cd	¹⁰⁹ Cd e- capture	110Cd Stable	111Cd Stabia	112Cd Stable	¹¹³ Cd ₽	114Cd	¹¹⁵ Cd	118Cd	¹¹⁷ Cd	¹¹⁸ Cd ₽	¹¹⁹ Cd	120Cd	¹²¹ Cd	¹²² Cd	¹²³ Cd	¹²⁴ Cd	¹²⁵ Cd	¹²⁸ Cd	¹²⁷ Сd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	
97Ag	⁹⁸ Ag ^{β∗}	⁹⁹ Ag _{8*}	¹⁰⁰ Ад _{в*}	¹⁰¹ Ag	¹⁰² Ад _{в+}	¹⁰³ Ag	¹⁰⁴ Ад _{в+}	¹⁰⁵ Ag	¹⁰⁸ Ag	¹⁰⁷ Ag _{Stable}	¹⁰⁸ Ag ⊮	¹⁰⁹ Ag Sabie	¹¹⁰ Ag ⊮	¹¹¹ Ag ⊮	¹¹² Ag ⊮	¹¹³ Ag ⊮	¹¹⁴ Ag ⊮	¹¹⁵ Ag ⊮	¹¹⁸ Ag ⊮	¹¹⁷ Ag ⊮	¹¹⁸ Ag ₽	¹¹⁹ Ag ⊮	¹²⁰ Ag ⊮	¹²¹ Ag ⊮	¹²² Ag	¹²³ Ag	¹²⁴ Ag	¹²⁵ Ag	¹²⁸ Ag	¹²⁷ Ag ⊮	¹²⁸ Ag	¹²⁹ Ag ⊮	
⁹⁶ ₽d ₅+	⁹⁷ ₽d ₅∗	⁹⁸ Ρd _{β+}	99Pd	100Pd e- capture	¹⁰¹ Pd _{β⁺}	¹⁰² Pd	¹⁰³ Pd e- capture	¹⁰⁴ Pd Stable	¹⁰⁵ Pd Stable	¹⁰⁶ Pd Stable	¹⁰⁷ Pd ⊮	¹⁰⁸ Pd Stable	¹⁰⁹ Pd ⊮	¹¹⁰ Pd	¹¹¹ Pd ⊮	¹¹² Pd ⊮	¹¹³ Pd ⊮	¹¹⁴ Pd ⊮	¹¹⁵ Pd ⊮	¹¹⁶ Pd ₽	¹¹⁷ Pd ⊮	¹¹⁸ Pd ⊮	¹¹⁹ Pd ⊮	¹²⁰ Pd ⊮	¹²¹ Pd	¹²² Pd	¹²³ Pd ⊮	¹²⁴ Pd	¹²⁵ Pd ⊮	¹²⁶ Pd ⊮	¹²⁷ Pd ⊮	¹²⁸ Pd ⊮	

[1] Vernon A.R., Garcia Ruiz R.F., Miyagi T., et al. Nature 607, 260–265 (2022).

2022 experimental campaign: Ag

Laser development for the production of narrow band 328 nm UV light:

- OPO seeded Pulsed Dye Amplifier
- Dye Matisse seeded Pulsed Dye Amplifier
- Sum frequency of Matisse seeded Ti:Sa injection locked and single mode 532 nm

(c) Sum frequency generation (SFG): SFG setup.

M. Urquiza-Gonzalez, ..., L. Lalanne et al., Proc. SPIE 12399, Solid State Lasers XXXII, 123990M (2023)

2022 experimental campaign: Ag

Odd-even high-spin states:

- Very constant trend, except close to N = 50
- Comparison to indium data

→The additional proton holes have no effect on the magnetic moment

Odd-even low-spin states:

- Slight downwards trend that flattens out
- In g-factors are very different than in Ag
 →Two proton holes induce different configuration mixing

Analysis and plots from Bram van der Borne

2022 experimental campaign: AcF

- Nonzero permanent electric dipole moments (EDM's) implies the existence of the T,P-violating interactions
- Schiff moment \vec{S} : permanent electric field localized inside the nucleus that can produce EDM
- Large Z & A, and $\beta_3 \neq 0$ \rightarrow Strongly enhanced $\vec{S}^{(2)}$
- ²²⁷Ac: predicted as largest *S* across nuclear chart ⁽¹⁾
- Energetically close levels of opposite parity in molecules
 → Strong enhancement of the T,P-violating effects ⁽²⁾

CRIS can contribute to future Schiff moment searches by measuring the low-lying electronic and vibrational structure of ²²⁷AcF to benchmark quantum chemistry calculations

²²⁷AcF predicted as one of the most promising system for the first measurement of a non-zero EDM ^(1,2)

$$1 \times 10^{-4} \frac{J}{J+1} \beta_2 \beta_3^2 Z A^{\frac{2}{3}} \frac{[kev]}{E^+ - E^-} \ [e\eta f m^3]$$

2

I

 $\vec{S} \approx$

⁽¹⁾Flambaum & Dzuba, Phys. Rev. A **101** (2020)

 $[L_{\alpha}U]$

11

⁽²⁾ L. V. Skripnikov, N. S. Mosyagin, A. V. Titov, V. V. Flambaum, Physical Chemistry Chemical Physics 22(33), 18374 (2020).

2022 experimental campaign: AcF

 \rightarrow First step of an experimental program dedicated to AcF

12

2023 CRIS upgrades

January 2023

March 2023

New end of the beam line:

- New field ionization unit
- New bender
- New beam optics toward the DSS
- \rightarrow Allows Rydberg ionization scheme
- \rightarrow Improved beam transport efficiency

2023 CRIS upgrades

January 2023

March 2023

New end of the beam line:

- New field ionization unit
- New bender
- New beam optics toward the DSS
- \rightarrow Allows Rydberg ionization scheme

 \rightarrow Improved beam transport efficiency

New Decay Spectroscopy Station:

- Tape station
- Alpha/proton decay mode (Si sandwich)
- Beta decay mode (plastic + Ge)

 \rightarrow Improved sensitvity (decay tagging)

 \rightarrow Allows decay spec. with isomeric purified beam

2023 experimental campaign

 \rightarrow 3 experiments to be performed this year. Stay tuned!

THANK YOU FOR YOUR ATTENTION