

Studying structure near the neutron emission threshold using the detectors TETRA and MONSTER at ALTO

Emile Cantacuzène

David Verney

Team FIIRST

- I. Structure near the neutron emission threshold
- **II. Experimental setup**
- **III. TETRA simulation with Geant4**
- **IV. TETRA data analysis from 2018 Indium experiment**

Beta-delayed neutron emission

• $Q_{\beta-n} = Q_{\beta} - S_n$ \blacksquare Available energy for neutrons

• P_n : Probability for the daughter nucleus to emit a neutron after the beta decay

The statistical models

Completely statistical

- Better results for integrated properties in N = 50 region
- No overestimation of the population of levels under S_n

Statistical and Non Statistical Models for Delayed Neutron Emission : Application to nuclei near A=90 Z.M. De Oliveira (1980)

Experimental setup

ALTO - LEB

Neutron counter : TETRA

Beam production using ISOL technique

- Photofission
- Laser ionization
- Mass separation

$^{3}\text{He} + n \rightarrow \ ^{3}\text{H} + p + 765 \text{ keV}$

22/03/2023

ISOL France - 2023

Can TETRA provide neutron information ?

- 80 cells arranged in 4 rings
- 99% Helium 3, 1% CO2 mixture
- 7 bar in each cell

Plastic beta detector

Light guide

Elements missing :

- Germanium detector
- PMT
- Metal cover over all cells

TETRA's detection principle

TETRA efficiency per ring

- The efficiency per ring changes with the neutron energy
- Can a link between ring efficiency and mean neutron energy be made ?

TETRA ring ratios

ISOL France - 2023

Different energy distributions

Indium 132 Data analysis

By solving Bateman equations :

 $P_n(In \ 132) = 17 \pm 5\%$

Indium 133 Data analysis

 $P_n(In \ 133) = 75 \pm 13\%$

Uncertainties coming mainly from TETRA efficiency

$$\frac{P_n(\ln 133)}{P_n(\ln 132)} = 4.5 < 13.5 \text{ on ENSDF}$$

Coming up

Beam time at ALTO in April for Silver 122 and more... >COeCO and TETRA getting ready

ISOL France - 2023

Coming up

MONSTER @ ALTO

- > Structure installation in summer 2023
- > Experiment MONSTER + BEDO planned in 2024

Thank you for your attention

Back up slides

The microscopic point of view

Galium (Z=31) systematics

Verney et al. "Pygmy Gamow-Teller resonance in the N = 50 region: New evidence from staggering of β-delayed neutron-emission probabilities" 2017

