

Preliminary discussion for the DESIR gas cell

Vladimir Manea

IJCLab, Orsay, France

1

Summary

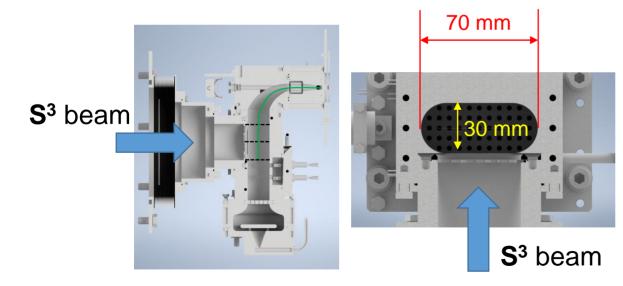
also of interest for FRIENDS³

Université de Paris

Key properties of the gas cell for DESIR:

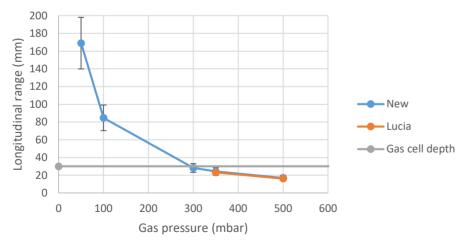
- <u>Universal</u>: --> ion extraction, so He buffer gas (lower probability of neutralization)
- <u>Fast:</u>
 - Simple flow but small volume (high pressure for high stopping power and reduced diffusion)
 - Electrical field (lower pressure for reduced drag, so higher volume)
 - A combination/compromise of the two

Ongoing « discussion » for DESIR gas-cell -> before discussing a concrete project :


- Literature survey for identifying approaches, constraints and trade-offs
- Preliminary simulations:
 - Stopping of ions in the gas for He or (lower pressures)
 - Extraction by simple flow (S³-LEB or smaller gas cell with He) ~
 - Extraction by electrical field (take FRIENDS³ simulated design as starting point)
 - ...

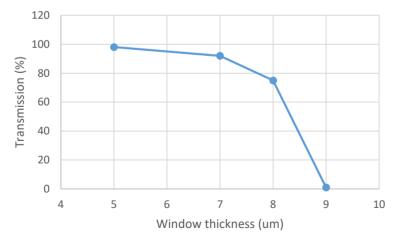
Simulation case study: ¹⁰⁰Sn, Ti window

2.5%								F. Déchery et al., Eur. Phys. J. A 51, 66 (2015)					
N°	Reactions	τ	E	$\sigma_{\frac{\mathrm{d}p}{p}}$	$\sigma_{ heta}$	Q (d Q)	B ho	E ho	$\epsilon_{XX'}$	$\epsilon_{YY'}$			
		$\mu {\rm g/cm^2}$	MeV	%	mrad	Mean (RMS)	$T \cdot m$	$M \cdot V$	${ m mm} \cdot { m mrad}$	${ m mm\cdot mrad}$			
1	${ m ^{46}Ti}({ m ^{58}Ni},4n){ m ^{100}Sn}$	500	84.5	2.1	25	26.4 (1.8)	0.509	6.50	13	72			
2	208 Pb $(^{48}$ Ca $, 2n)^{254}$ No	600	35.0	2.2	34	18.3(2.1)	0.755	3.89	17	98			
3	$^{238}\mathrm{U}(^{22}\mathrm{Ne},5\mathrm{n})^{255}\mathrm{No}$	170	8.3	4.8	70	8.7 (1.5)	0.736	1.85	35	202			


- Exploring lower pressures or He raises the question of stopping range and straggling
- Perform SRIM simulations
- Use ¹⁰⁰Sn beam as input
- SRIM overestimates stopping power (for simplicity this aspect is not considered at this stage)

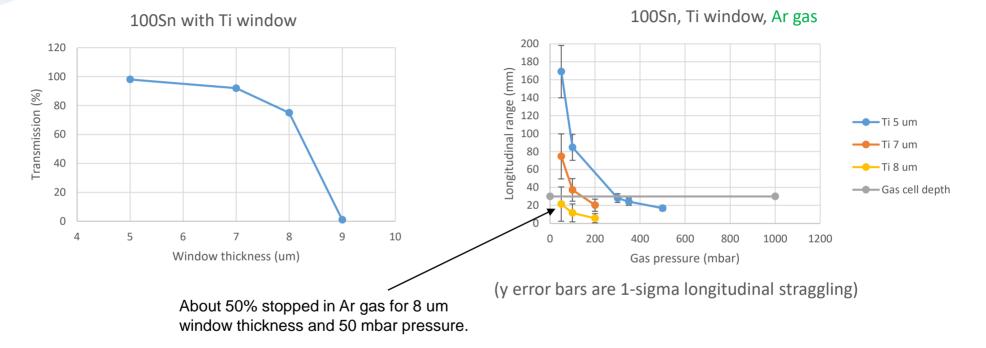
Simulation case study: ¹⁰⁰Sn, Ti window

2.5%								F. Déchery et al., Eur. Phys. J. A 51, 66 (2015)					
N°	Reactions	τ	E	$\sigma_{\frac{\mathrm{d}p}{p}}$	$\sigma_{ heta}$	$Q \; (\mathrm{d}Q)$	B ho	E ho	$\epsilon_{XX'}$	$\epsilon_{YY'}$			
		$\mu~{\rm g/cm^2}$	MeV	%	mrad	Mean~(RMS)	$T \cdot m$	$M \cdot V$	${ m mm}{\cdot}{ m mrad}$	${ m mm\cdot mrad}$			
1	${ m ^{46}Ti}({ m ^{58}Ni},4n){ m ^{100}Sn}$	500	84.5	2.1	25	26.4 (1.8)	0.509	6.50	13	72			
2	208 Pb $(^{48}$ Ca $, 2n)^{254}$ No	600	35.0	2.2	34	18.3(2.1)	0.755	3.89	17	98			
3	$^{238}\mathrm{U}(^{22}\mathrm{Ne},5\mathrm{n})^{255}\mathrm{No}$	170	8.3	4.8	70	8.7 (1.5)	0.736	1.85	35	202			


- Exploring lower pressures or He raises the question of stopping range and straggling
- Perform SRIM simulations
- Use ¹⁰⁰Sn beam as input
- SRIM overestimates stopping power (for simplicity this aspect is not considered at this stage)
- Benchmark with Ar

Simulation case study: ¹⁰⁰Sn, Ti window

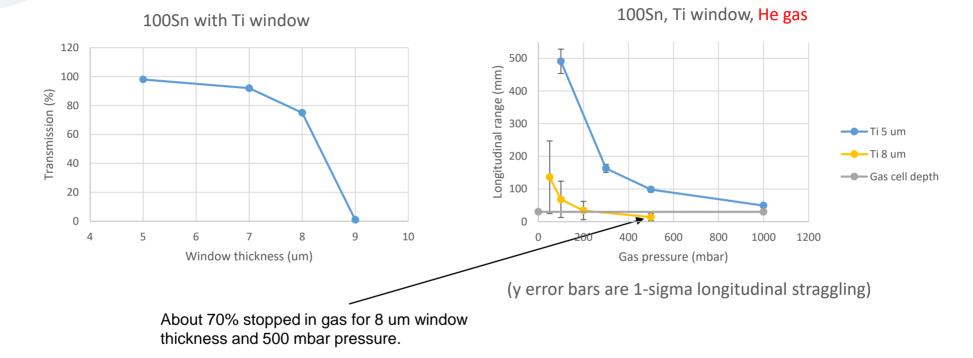
2.5%								F. Déchery et al., Eur. Phys. J. A 51, 66 (2015)					
N°	Reactions	τ	E	$\sigma_{\frac{\mathrm{d}p}{p}}$	$\sigma_{ heta}$	$Q \; (\mathrm{d}Q)$	B ho	E ho	$\epsilon_{XX'}$	$\epsilon_{YY'}$			
		$\mu~{\rm g/cm^2}$	MeV	%	mrad	Mean~(RMS)	$T \cdot m$	$M \cdot V$	${ m mm}{\cdot}{ m mrad}$	$\rm mm \cdot mrad$			
1	${ m ^{46}Ti}({ m ^{58}Ni},4n){ m ^{100}Sn}$	500	84.5	2.1	25	26.4 (1.8)	0.509	6.50	13	72			
2	208 Pb $(^{48}$ Ca $, 2n)^{254}$ No	600	35.0	2.2	34	18.3(2.1)	0.755	3.89	17	98			
3	$^{238}\mathrm{U}(^{22}\mathrm{Ne},5\mathrm{n})^{255}\mathrm{No}$	170	8.3	4.8	70	8.7 (1.5)	0.736	1.85	35	202			



- Exploring lower pressures or He raises the question of stopping range and straggling
- Perform SRIM simulations
- Use ¹⁰⁰Sn beam as input
- SRIM overestimates stopping power (for simplicity this aspect is not considered at this stage)
- Benchmark with Ar
- To some extent, stopping range can be adjusted by the window thickness.

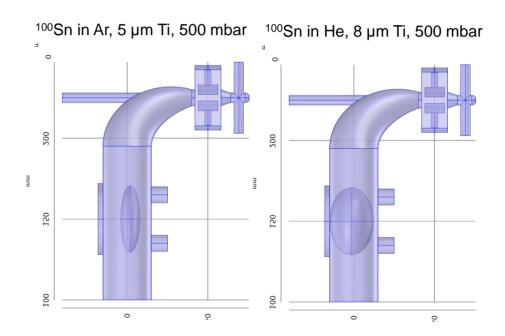
Reducing the pressure for Ar gas cell

CNIS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY Université de Paris



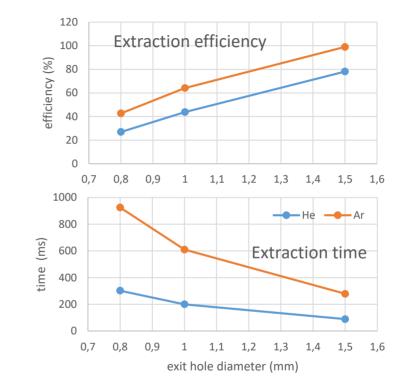
• Straggling is an issue for low pressures.

Stopping ions in He



- Stopping power of He is much lower: larger stopping range and straggling
- ¹⁰⁰Sn can be stopped in existing gas cell at 500 mbar He pressure.

- S³-LEB gas cell in two configurations:
 - Ar, 500 mbar, 5 µm Ti
 - He, 500 mbar, 8 µm Ti
- Stopped ¹⁰⁰Sn modeled as ellipsoidal source domain
- Calculate efficiency and extraction time as a function of exit hole diameter.
- Simulations based on KU Leuven file (Evgeny Mogilevskiy et al.)

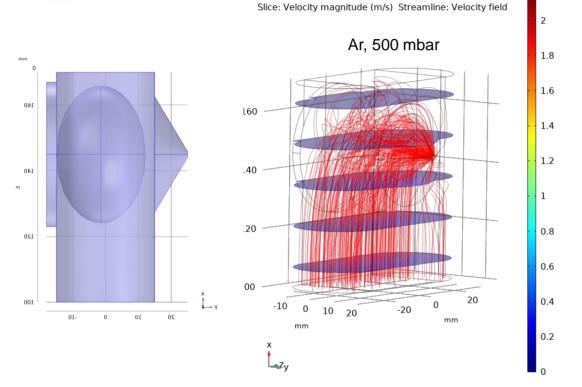

FACULTÉ

DOPSAY

DES SCIENCES

S³-LEB gas cell in two configurations:

- Ar, 500 mbar, 5 µm Ti
- He, 500 mbar, 8 µm Ti
- Stopped ¹⁰⁰Sn modeled as ellipsoidal source domain
- Calculate efficiency and extraction time as a function of exit hole diameter.
- Simulations based on KU Leuven file (Evgeny Mogilevskiy et al.)
- Good agreement with KU Leuven results on Ar simulations.



- > Extraction times scale as \sqrt{A} and $1/d^2$
- For He, 0,8 mm is currently the upper limit due to the required decay time in the evacuation delay line

An even smaller S³-LEB gas cell

« What if we just put the exit in front of the gas-cell window? »

- « Small gas cell» (theoretical limit): extraction cone in front of window
- Having a bit of room on the gas injection side helps

FACULTÉ

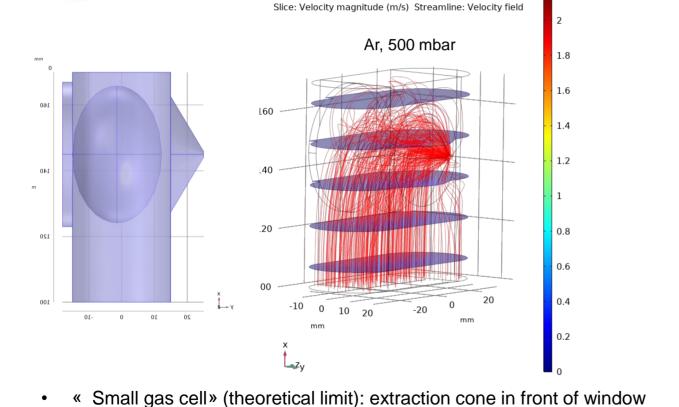
D'ORSAY

DES SCIENCES

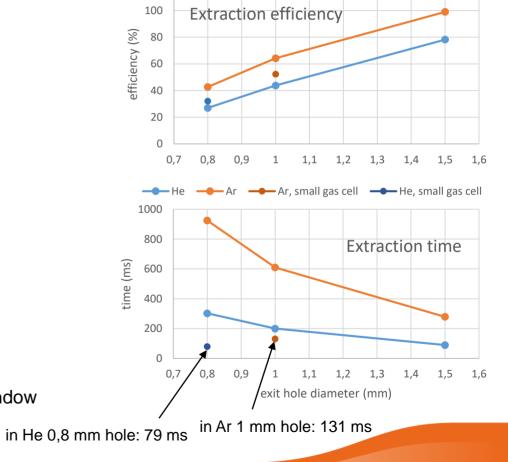
cnrs

W

Université de Paris

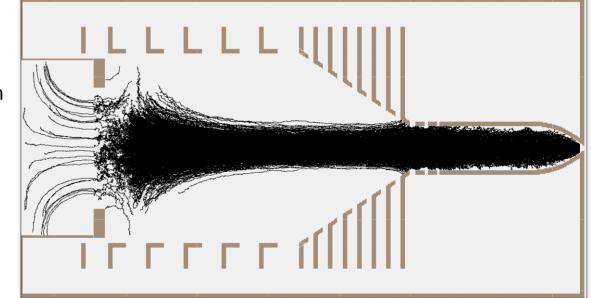


An even smaller S³-LEB gas cell


120

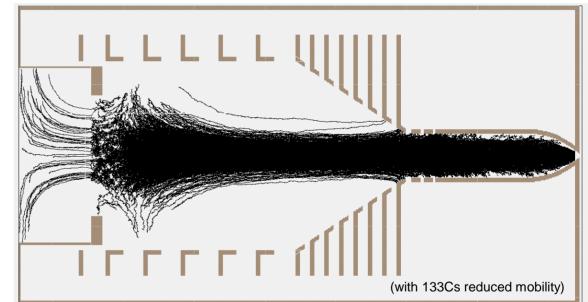
« What if we just put the exit in front of the gas-cell window? »

• Having a bit of room on the gas injection side helps



FRIENDS³ gas cell with Ar

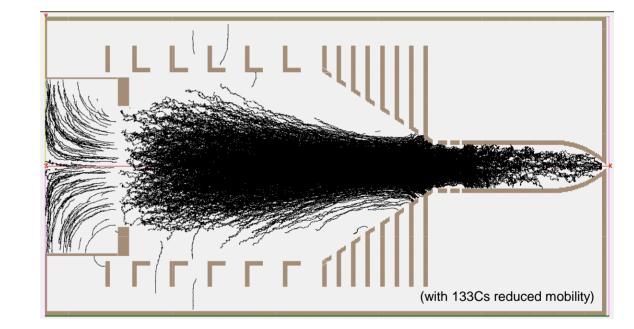
- > In Wenling's work, optimization on ion cloud: ¹³³Cs⁺, depth = 20 mm, σ_{depth} = 5 mm, σ_{trans} = 10 mm
- ➢ At 200 mbar:
 - Total extraction time 127 ms
 - Extraction efficiency 24%



> In Wenling's work, optimization on ion cloud: ¹³³Cs⁺, depth = 20 mm, $\sigma_{depth} = 5$ mm, $\sigma_{trans} = 10$ mm

- > At 200 mbar:
 - Total extraction time 127 ms
 - Extraction efficiency 24%
- Taking distribution for ¹⁰⁰Sn in 200 mbar Ar, 7µm Ti window:
 - Total extraction time 133 ms
 - Extraction efficiency 23%

cnrs

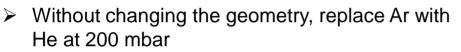

FRIENDS³ gas cell with He

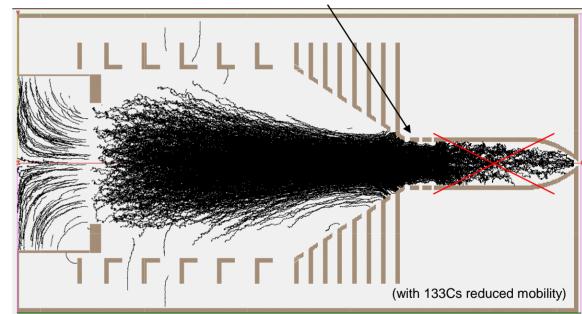
FACULTÉ

DOPSAY

DES SCIENCES

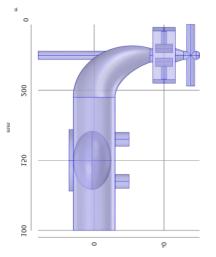
- Without changing the geometry, replace Ar with He at 200 mbar
- ➤ Take ¹⁰⁰Sn distribution for 8 µm Ti
- Slighly reoptimize voltages (quick):
 - Total extraction time 22 ms
 - Total efficiency 1-2 % (major loss in exit tube, but we don't need it)




FRIENDS³ gas cell with He

To entrance of tube:

- Extraction time 6 ms
- Transport efficiency 38%


- > Take ¹⁰⁰Sn distribution for 8 μ m Ti
- Slighly reoptimize voltages (quick):
 - Total extraction time 22 ms
 - Total efficiency 1-2 % (major loss in exit tube, but we don't need it)
- An electrical gas cell optimized for Ar can work with He, but an RF carpet/funnel will be required at extraction.

Conclusions

- It seems feasible to use the S³-LEB gas cell (or similar) with He for extracting ions, but:
 - real stopping range and required pressure/window should be precisely determined.
- A minimal S³-LEB-like gas cell gives an extraction-time limit in the 70 ms range (also considering 1,5 mm hole for Ar).
- Stopping range is a crucial aspect which should be revisited for the S³-LEB gas cell too (the idea of a degrader too).
- FRIENDS³ simulated design should probably be slightly increased in size even for Ar, but:
 - replacing Ar with He should be possible by adjusting window thickness and pressure and replacing the extraction tube with an RF carpet/funnel.

FACULTÉ

université

DES SCIENCES

Université de Paris

