









an emerging national collaborative effort for IA applications to accelerators physics and technologies

by Adnan GHRIBI on behalf of the M4CAST collaboration (IRFU/GANIL) on 2023, April 11th

Journée Modélisation LWFA du GdR APPEL

» Layout

Background

Purpose, ways and methods

Organization

Resources

Ongoing work

Conclusion

## **Background**

Purpose, ways and methods

Organization

Resources

Ongoing work

Conclusion

Background 0

- Artificial Intelligence has penetrated almost all scientific disciplines;
- For accelerator physics, an important dynamic has risen in the US;
- \* Others are slowly merging in France and in Europe:
- Data and calculation infrastructures also follow a fast development pace.



## » Background

Background ○●

- \* Artificial Intelligence has penetrated almost all scientific disciplines:
- For accelerator physics, an important dynamic has risen in the US;
  - Opportunities in Machine Learning for Particle Accelerators, A. Edelen et al.
- Others are slowly merging in France and in Europe;
- Data and calculation infrastructures also follow a fast development pace.



Number of published ML articles in sciences and for accelerators - ArXiv + Google Scholar.

 $\Rightarrow$  However, we lack synergy and organisation to foster these new developments.

## Background

## Purpose, ways and methods

Organization

Resources

Ongoing work

Conclusion

#### **Bridging isolated islands**



#### Purpose







Ways









Ways



Ways

#### Applicability

- \* Applicable methods to different accelerator technologies :
  - \* High power LINACs (ex. ADS);
  - \* Cyclotrons/Synchrotrons;
  - Laser wakefield acceleration (LWFA).
- \* For different particle acceleration (protons, heavy ions, electrons);
- \* Crossing the barrier between Operation and Design.

#### Background

Purpose, ways and methods

Organization

Resources

Ongoing work

Conclusion

## » Organization

#### National

Framework agreement, including appen dices:

- Structure (Steering committee and management board);
- Scientific program;
- Data and software policy (including FAIRness);
- Ethical charter.



## » Organization

#### Organizing a European synergy





## Background

Purpose, ways and methods

Organization

Resources

Ongoing work

Conclusion

Experimental

⇒ every accelerator becomes part of a whole

#### » Resources

## What we got!

#### Experimental

- \* Shared machine studies:
- ⇒ every accelerator becomes part of a whole
- - ⇒ improving components models

Resources

What we got!

- Experimenta
- Shared machine studies;
  - ⇒ every accelerator becomes part of a whole
- \* Components test benches;
  - ⇒ improving components models
- Calculation \* Relying on National (ex. GENCI) and European resource

#### » Resources

What we got!

**Experimental** 

- \* Shared machine studies:
  - ⇒ every accelerator becomes part of a whole
- \* Components test benches;
  - ⇒ improving components models

Calculation

- \* Relying on National (ex. GENCI) and European resources (HPC);

```
* Shared machine studies;

⇒ every accelerator becomes part of a whole

* Components test benches;

⇒ improving components models

Calculation

* Relying on National (ex. GENCI) and European resources (HPC);

Storage

* 300 To / year granted in CC IN2P3 (M4CAST project);
```

#### » Resources

## What we got!

#### **Experimental**

- \* Shared machine studies:
  - ⇒ every accelerator becomes part of a whole
- \* Components test benches:
  - ⇒ improving components models

#### Calculation

\* Relying on National (ex. GENCI) and European resources (HPC);

Resources

- Storage
- \* 300 To / year granted in CC IN2P3 (M4CAST project);
- Support for EU projects (one project engineer + 10 k€for expanses)
- $\Rightarrow$  3 PhDs and 3 internships ongoing:
  - ⇒ 2 PhDs planned for next year.

Resources

» Resources

Curation

 Outsource the first layer curation workflow with a shared/common output (meta)data structure;
 Asking ~ 100 k€⇒ IN2P3; Projet transverse MLacc

#### » Resources

What we need!

- Curation
- \* Outsource the first layer curation workflow with a shared/common output (meta)data structure;
   Asking ~ 100 k€⇒ IN2P3; Projet transverse MLacc
- Calculation
- ~ 7.5 M CPU hours / year + 500 k GPU hours / year Asking ⇒ GENCI (Jean-Zay; Joliot-Curie, Adastra)

Resources

#### » Resources

What we need!

Curation

 \* Outsource the first layer curation workflow with a shared/common output (meta)data structure;
 Asking ~ 100 k€⇒ IN2P3; Projet transverse MLacc

Calculation

\* ~ 7.5 M CPU hours / year + 500 k GPU hours / year; Asking ⇒ GENCI (Jean-Zay; Joliot-Curie, Adastra)

RI

~ 8 UT of beam time / year;
Asking ⇒ Involved research infrastrctures

- Curation
- \* Outsource the first layer curation workflow with a shared/common output (meta)data structure; Asking ~ 100 k€⇒ IN2P3; Projet transverse MLacc
- Calculation
- \* ~ 7.5 M CPU hours / year + 500 k GPU hours / year; Asking ⇒ GENCI (Jean-Zay; Joliot-Curie, Adastra)
- \* ~ 8 UT of beam time / year:
  - Asking ⇒ Involved research infrastrctures

What we need!

- Curation \* Outsource the first layer curation workflow with a shared/common output (meta)data structure;
- Calculation

Asking ~ 100 k€⇒ IN2P3: Projet transverse MLacc

- \* ~ 7.5 M CPU hours / year + 500 k GPU hours / year; Asking ⇒ GENCI (Jean-Zay; Joliot-Curie, Adastra)
  - \* ~ 8 UT of beam time / year: Asking ⇒ Involved research infrastrctures
  - \* IA/MLOPS engineer support (for the next 3 years);
    - \* One data contact person / institute; Asking ⇒ Involved partners.

Resources 000

## Background

Purpose, ways and methods

Organization

Resources

**Ongoing work** 

Conclusion

# » Ongoing work Anomaly detection and virtual observers

|  |  | 011111 |  |
|--|--|--------|--|
|  |  |        |  |
|  |  |        |  |
|  |  |        |  |
|  |  |        |  |
|  |  |        |  |
|  |  |        |  |

| Metrics     | SVM  | LSTM |
|-------------|------|------|
| Accuracy    | 0.98 | 0.93 |
| Precision   | 0.97 | 0.88 |
| Recall      | 0.99 | 0.98 |
| $F_1$ score | 0.98 | 0.93 |

Performance index comparison between SVM  $^1$  and LSTM  $^2$  for valves anomaly detection with models generated data [Vassal et al. Frontiers (2022)].



Density destribution of predictors and residuals for model based and DNN based observers. [Ghribi et al. (2022)]

<sup>. &</sup>lt;sup>1</sup>Support Vector Machines

<sup>. &</sup>lt;sup>2</sup>Long Short Term Memory Networks

**ARRONAX** 

## » Ongoing Work Data mining and anomaly detection/classification

Detection of outliers for radio-isotope production



Detection of outliers for radio-isotope production

- Regular and stable production over several days;
- Exploring several approaches for clustering (DBSCAN, Isolation Forest) and detection robustness
- \* identification and classification of outliers.



Isolation Forest anomaly detection for different variables dimension reduction (Credit: F. Poirier).

## » Ongoing WorkMulti-objective optimisation for fault compensation

- LPSC
- \* LightWin: a tool to find compensation settings for RF cavity failures in LINACs
- \* multi-objective optimisation problem :
  - \* at least 8 variables : amplitude and phase of compensating cavities;
  - \* at least 6 objectives :  $\Delta W_{\rm kin}$ ,  $\Delta \phi$ , beam parameters,
- \* currently using least-squares (not adapted, looking into genetic algorithm, PSO and ML techniques . . . )



MYRRHA LINAC, 10 faults distributed along the accelerator (Credit : A. Plaçais; F. Bouly)

## » Ongoing work PhD - Model of a LINAC injector with ANN

- \* RNN Model LEBT (+RFQ)
  - \* 3 hidden layers with 64 neurones
- \* Training w. measured ( $\sim 10^4$ ) and simulated (beam dynamic code) data
- \* (Predictor not fully terminated)
- Also studied : on-line tuning of A LEBT : PSO algorithm "plugged" on the control system

Transmission Map in the MYRRHA LEBT.[M. Debongnie, Phd Thesis (2021).]



- Reservoir of Neurons for Dynamic
   Aperture prediction
- Applications to HL-LHC and FCC-ee
- \* Planned PhD



Dynamic aperture estimation with echo state networks (Credit : B. Dalena)

Ongoing work

#### » Ongoing Work Surrogate models

**IJClab** 

- Physics constrained neuro-morphic type design
- Allows to make precise fast simulations of a LINAC
- \* ThomX and other industry applications
- Ongoing PhD thesis



LINAC net model for ThomX (Credit : E. Goutière, Hayg Guler)

# » Ongoing Work Other ...

#### IRFU, DESY, GSI, La Sapienza

- \* Improving current simulation tools
  - \* GPU acceleration
  - \* Multi-parametric scans
- Optimized design of future accelerators
  - \* Robustness to imprefections
  - \* Crossing multiple projects FCC-ee, Petra IV, ...

Background

Purpose, ways and methods

Organization

Resources

Ongoing work

Conclusion

#### » Conclusion

- M4CAST: an emerging collaborative effort around IA for accelerators concentrating on data/methods sharing;
- Integrates within a new European dynamic around IA for accelerators;
- Bridges existing and future projects as well as reliability and optimization, R&D and operation, ...;
- Data curation and calculation resources is an issue we need to overcome

Questions?

# Thank you!