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We implement tunnel ionization (ADK theory)

WarpX offers a comprehensive set 
of additional physical modules

4

We implement Coulomb collisions and 
collisions with neutral background

We implement deuterium-deuterium, deuterium-tritium, 
deuterium-helium and proton-boron fusion 

We implement quantum synchrotron and 
nonlinear Breit-Wheeler pair production
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WarpX provides 
advanced algorithms
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We provide a pseudo-spectral solver, that tackles
numerical dispersion, avoiding the cost of a global FFT

We provide the option of using a “Boosted frame”, where 
the simulation may be orders of magnitude faster

We provide the option of adding “embedded surfaces”
with complex geometries
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WarpX provides 
advanced algorithms

5

We provide a pseudo-spectral solver, that tackles
numerical dispersion, avoiding the cost of a global FFT

We provide the option of using a “Boosted frame”, where 
the simulation may be orders of magnitude faster

(and  several others!)

We provide the option of adding “embedded surfaces”
with complex geometries
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WarpX provides critical features to run
efficiently at scale

6

Scalable output based on OpenPMD+ADIOS2 allows 
writing efficiently 10s Terabytes of data per simulation

Dynamic load balancing: redistributing “chunks” of 
the simulation among the nodes to ensure that each 
one has an approximately equal amount of work
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supercomputers in the world!



T. Clark

Open-source & available on Github
Documentation: ecp-warpx.github.io/

30+ contributors

WarpX is an open-source Particle-In-Cell code 
for the exascale era.

From your laptop to the largest 
supercomputers in the world!
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Why do we need portability ?

Frontier

Fugaku

Perlmutter

Summit

Architecture

Nvidia A100

Nvidia V100

AMD MI250X

Fujitsu A64FX

Rank in TOP500
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WarpX runs on GPUs (AMD, NVIDIA) and on 
CPUs (AMD, Intel, ARM…)
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WarpX runs on GPUs (AMD, NVIDIA) and on 
CPUs (AMD, Intel, ARM…)

We achieve performance portability across 
different architectures thanks to AMReX
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Single source approach
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We express our algorithms as lambdas 
fed to “ParallelFor” functions

← On GPUs, this is a 
CUDA/HIP/DPC++ kernel call

On CPUs this is just a loop
(possibly SIMD)

← AMReX also provides GPU-friendly containers,  drop-in replacement 
for some STL features, parallel reductions...
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“ParallelFor” now supports also compile-time 
optimization for runtime parameters

11

←Thanks to template 
programming, under the 
hood, it generates all the 
possible combinations
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“ParallelFor” now supports also compile-time 
optimization for runtime parameters

11

←Thanks to template 
programming, under the 
hood, it generates all the 
possible combinations

Helpful to reduce registry 
pressure on GPUs and for 
vectorization on CPUs
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WarpX scales very well over 
4-5 orders of magnitude

L.Fedeli et al. SC22 (2022)
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Nodes
Frontier: 1 – 8,576 (pre-acceptance)
Fugaku: 1 - 152,064
Summit: 2 - 4,263
Perlmutter: 1 – 1,088 (pre-acceptance)

L.Fedeli et al. SC22 (2022)

WarpX scales very well over 
4-5 orders of magnitude
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WarpX can be strong-scaled by an order of magnitude
when needed

L.Fedeli et al. SC22 (2022)
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WarpX can be strong-scaled by an order of magnitude
when needed

Nodes
Frontier: 512 – 8,192 (pre-acceptance)
Fugaku: 6,144 - 152,064
Summit: 512 - 4,096
Perlmutter: 15 – 480 (pre-acceptance)

L.Fedeli et al. SC22 (2022)
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we expect only few % peak FLOP/s efficiency
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T. Clark

A Particle-In-Cell code is memory bound:
we expect only few % peak FLOP/s efficiency

Frontier MI250X

Perlmutter A100

Summit V100

DP PFlop/s

3.38

11.79

43.45

14
L.Fedeli et al. SC22 (2022)



T. Clark

A Particle-In-Cell code is memory bound:
we expect only few % peak FLOP/s efficiency

Frontier MI250X

Fugaku A64FX

Perlmutter A100

Summit V100

DP PFlop/s

3.38

11.79

5.31

43.45
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A Particle-In-Cell code is memory bound:
we expect only few % peak FLOP/s efficiency

Frontier MI250X

Fugaku A64FX

Perlmutter A100

Summit V100

DP PFlop/s

3.38

11.79

5.31

43.45

14
L.Fedeli et al. SC22 (2022) → Specific tuning for Fugaku (3.3X perf. in SP)
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With the help of 
we optimized the most expensive 
kernels for A64FX (single precision only)
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Current deposition is
a very expensive operation

A64FX-specific optimizations
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for p : particle
{

for i : x_indices
for j : y_indices

for k : z_indices
{

compute n_ijk
} 

}

Pseudocode

← 64 indices in 3D,
but very small loops
(4x4x4)
Inefficient
vectorization

Current deposition is
a very expensive operation

A64FX-specific optimizations
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for i : x_indices
for j : y_indices

for k : z_indices
{

for p : particle
{

compute n_ijk
}

} 

Optimized pseudocode

← Longer inner loop
More efficient
vectorized code

However, this requires
data reorganization

Best performances
obtained using
intrinsics

Current deposition is
a very expensive operation

A64FX-specific optimizations

16



T. Clark

Optimized field gather and current deposition 
lead to very significant speed-ups!
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Optimized field gather and current deposition 
lead to very significant speed-ups!

Now we want to generalize those optimizations for other CPUs architectures !
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Plasma 
accelerators
(LBNL, DESY, 
SLAC)

Laser-ion acceleration -
advanced mechanisms (LBNL)

Plasma mirrors and high-field 
physics + QED (CEA Saclay/LBNL)

Laser-ion 
acceleration -
laser pulse 
shaping (LLNL)

Pulsars, magnetic
reconnection (LBNL)

Fusion devices (Zap Energy, 
Avalanche Energy)

Magnetic fusion sheaths (LLNL)
Microelectronics (LBNL) - ARTEMIS

Thermionic converter
(Modern Electron)

WarpX is used for 
many different applications!
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At CEA, We are mainly interest by those one !
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Our main 
research interests

19

Advanced laser-driven 
electron sources

Using ultra-intense lasers 
to study strong-field 
Quantum Electrodynamics
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Nonlinear Compton
scattering

Nonlinear Breit-Wheeler 
pair production

4
Strong-field QED is relevant for 
extreme astrophysical scenarios

Very difficult to 
study on Earth!

20
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5
When we say “strong-field” 
we really mean that!

Vacuum breakdown!
Virtual e+ e- pairs become real!
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5
When we say “strong-field” 
we really mean that!

Vacuum breakdown!
Virtual e+ e- pairs become real!

We are very far from this “Schwinger field”!

21
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Even the more intense laser is not nearly enough to reach 
the Schwinger field!

8

~1029 W/cm2

Schwinger Limit

22
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~1029 W/cm2

Schwinger Limit

Current record:
I ~ 1023 W/cm2

Six orders of magnitude 
gap!

Jin Woo Yoon & al. Optica 8, 5, 2019

Even the more intense laser is not nearly enough to reach 
the Schwinger field!
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8

~1029 W/cm2

Schwinger Limit

Current record:
I ~ 1023 W/cm2

Six orders of magnitude 
gap!

Jin Woo Yoon & al. Optica 8, 5, 2019

Even the more intense laser is not nearly enough to reach 
the Schwinger field!

However !
22
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Approaching the Schwinger field is easier in the reference
frame of relativistic particles

9
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With particles:
I > 1023 W/cm2 + 100 MeV e-
just to reach χ ~ 1
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T. Clark

Approaching the Schwinger field is easier in the reference
frame of relativistic particles

9

With particles:
I > 1023 W/cm2 + 100 MeV e-
just to reach χ ~ 1

Experiments have probed 
at most χ ~ 1 

23
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a Monte Carlo module to simulate QED processes
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recent papers: 
L. Fedeli et al.  New J. Phys. 24 025009, 2022
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The QED component of PICSAR provides WarpX with 
a Monte Carlo module to simulate QED processes

Includes the most relevant QED processes for PIC codes: 
synchrotron emission, nonlinear Breit-Wheeler pair production

Has been fully benchmarked in one of our 
recent papers: 
L. Fedeli et al.  New J. Phys. 24 025009, 2022
We are currently implementing other processes as linear Breit-Wheeler 

24
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Plasma mirror

LaserI ~ 10 22
W/cm 2

Booste
d beam

I > 102
5 W/cm

2

25

Our Scheme to boost the intensity of existing ultra-
intense lasers
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LaserI ~ 10 22W
/cm 2

The laser instantly turns the 
target into a plasma

H.Vincenti. Phys. Rev. Lett. 123, 105001, 2019

25

We can boost a laser beam using a curved plasma mirror
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The target behaves like a mirror

LaserI ~ 10 22W
/cm 2

H.Vincenti. Phys. Rev. Lett. 123, 105001, 2019

25

We can boost a laser beam using a curved plasma mirror
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Actually a mirror oscillating at
relativistic velocities (very well 
known in experiments)

LaserI ~ 10 22W
/cm 2

H.Vincenti. Phys. Rev. Lett. 123, 105001, 2019

25

We can boost a laser beam using a curved plasma mirror
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Surface curved by radiation 
pressure

LaserI ~ 10 22W
/cm 2

25

We can boost a laser beam using a curved plasma mirror
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Laser intensity can be boosted
by 3 orders of magnitude !
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(and we are working to do significantly better)

Present
record

F.Quéré & H.Vincenti HPLSE, 2021

Laser intensity can be boosted
by 3 orders of magnitude !

27
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8

Now we want to design a QED experiment on Apollon facility
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8

Strong signatures of SF-QED !

Now we want to design a QED experiment on Apollon facility

28
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Our main 
research interests

Advanced laser-driven 
electron sources

Using ultra-intense lasers 
to study strong-field 
Quantum Electrodynamics

28
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Where the idea of the Hybrid Target comes from ?
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Where the idea of the Hybrid Target comes from ?
Electron acceleration in gas

ü

Low charge : 10s to 100 pC

High energy : 100s Mev to GeV
But
v

Low divergenceü

29
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ü

v

v

Where the idea of the Hybrid Target comes from ?
Electron acceleration in gas

Electron acceleration with a plasma mirror
High charge

Low energy : 10 MeV
High divergence

But

ü

Low charge : 10s to 100 pC

High energy : 100s Mev to GeV
But
v

Low divergenceü

29
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Where the idea of the Hybrid Target comes from ?

A two-step process :
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1) Injection from the solid target

2) Acceleration in the gas
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Where the idea of the Hybrid Target comes from ?

A two-step process :

1) Injection from the solid target

2) Acceleration in the gas

It should provide :
A high charge from the high density of the solid target

A high quality since the injection is localized at solid surface

ü

ü

30
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The main challenge concerns 
laser-solid interaction

G
a
s

Bu
bbl
e

La
se
r

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trap
ped 
elect
rons

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆
⬆⬆⬆⬆
The simulation 
box follows the 
laser

High 
resolution 

required

Enabled by very good 
weak scaling → 

Lower 
resolution 

Enabled by very good 
strong scaling → 

What does it gives in simulation ?

31
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A movie from our 3D simulations
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The main challenge concerns 
laser-solid interaction

G
a
s

Bu
bbl
e

La
se
r

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trap
ped 
elect
rons

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆
⬆⬆⬆⬆
The simulation 
box follows the 
laser

High 
resolution 

required

Enabled by very good 
weak scaling → 

Lower 
resolution 

Enabled by very good 
strong scaling → 

Why those simulations are so expensive ?

33



T. Clark 34

An ultra-short laser beam propagates 
in a low density gas

Gas

Solid

Laser
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The laser pushes electrons away and generates
a positively charged “bubble”

Gas

Solid

Bubble
Laser

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++
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The laser is reflected by the high-density plasma
and the bubble traps some of its electrons 

Gas

Solid

Bubble
Laser

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trapped 
electrons

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++
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The bubble accelerates
electrons over few millimeters 

Gas

Solid

Bubble
Laser

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trapped 
electrons

34
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We can have smaller simulation
boxes with a “moving window”

Gas

Solid

Bubble
Laser

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trapped 
electrons

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

⬆⬆⬆⬆⬆⬆⬆

The simulation 
box follows the 
laser

We only need to simulate 
~ 100x100x100 μm3→
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The main challenge concerns 
laser-solid interaction
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+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

The simulation 
box follows the 
laser

We only need to simulate 
~ 100x100x100 μm3→

High 
resolution 

required
We need a resolution of 
few 10s nanometers for 
laser-solid interaction →

⬆⬆⬆⬆⬆⬆⬆
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The main challenge concerns 
laser-solid interaction

Gas

Solid

Bubble
Laser

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trapped 
electrons

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

The simulation 
box follows the 
laser

We only need to simulate 
~ 100x100x100 μm3→

High 
resolution 

required

but
Hefty price to pay:

dt ~ dx and size ~ (1/dx)3

⬆⬆⬆⬆⬆⬆⬆We need a resolution of 
few 10s nanometers for 
laser-solid interaction →
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The main challenge concerns 
laser-solid interaction

Gas
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Laser
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+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

The simulation 
box follows the 
laser

High 
resolution 

required

Enabled by very good 
weak scaling → 

Lower 
resolution
requiredWe need to simulate it

very good strong 
scaling → 
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The main challenge concerns 
laser-solid interaction

Gas

Bubble
Laser

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trapped 
electrons

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

The simulation 
box follows the 
laser

High 
resolution 

required

Enabled by very good 
weak scaling → 

Lower 
resolution
required

⬆⬆⬆⬆⬆⬆⬆

Solid
34

We need to 
simulate it on 

mm/cm→ 
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The main challenge concerns 
laser-solid interaction

G
a
s

Bu
bbl
e

La
se
r

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

Trap
ped 
elect
rons

+++++++   
+++++++++++

+++++++++++++  
++++++++++++++
+++++++++++++

++++++++++++
+++++++

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆
⬆⬆⬆⬆
The simulation 
box follows the 
laser

High 
resolution 

required

Enabled by very good 
weak scaling → 

Lower 
resolution 

Enabled by very good 
strong scaling → 

How do we switch resolution in the 
middle of the simulation? 
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WarpX features, comes to help
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High resolution 
here !

Mesh refinement in a Particle-In-Cell code
is a nightmare!

Electromagnetic waves have different
dispersion relations in the two areas!
(spurious reflections, unphysical effects...)

Mesh refinement, one of the most advanced 
WarpX features, comes to help

J.-L. Vay et al, Phys. Plasmas 11, 2928 (2004)
R. Lehe et al, Phys. Rev. E 106, 045306 (2022) 
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2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view
Mesh-refined
patch

Mesh-refined
patch

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

37



T. Clark

2D slices of our 3D simulations 
highlight the acceleration process

← 3D simulation 
on 4096 Summit 
nodes

Side view Front view

←We are mainly concerned with the 
properties of these electrons
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Our simulations with a PW-class laser show that we can 
accelerate a substantial amount of charge with high quality

Production runs on 
Frontier, Fugaku and Summit

0.5 nC (peak)
1.7 nC (total)

for a
PW laser

After ~ 1mm 
(acceleration still in progress)
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Exascale simulations informed the design of the first 
experimental validation of our concept (at LOA) 

Laser parameters
E = 400 mJ
waist = 17 μm
Ppeak = 10 TW
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Exascale simulations informed the design of the first 
experimental validation of our concept (at LOA) 

Results
Q= 17 pC
dE/Epeak = 8%
Divergence = 6 mrad
And…
Stability shot by shot !

Validated with simulations
Q= 26 pC
dE/Epeak = 9%
Divergence = 10  mrad
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A promising system!

[Götzfried]
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at apollon !
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A promising system!

[Götzfried]

Next experimental
campaign

at apollon !
Preliminary results :
Q=600pC
E = 600 MeV
dE/Epeak = 4%
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Conclusions and perspectives

l WarpX is a state-of-the-art open-source Particle-In-Cell 
code implementing sophisticated numerical algorithms
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Conclusions and perspectives

l WarpX is a state-of-the-art open-source Particle-In-Cell 
code implementing sophisticated numerical algorithms

l WarpX is portable across different architectures and scales well
on top machines, including the first exascale supercomputer

l WarpX help us to study and design new experiment as novel
electron acceleration strategies
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