

Physics opportunities at the Future Circular Collider(s)

Michele Selvaggi

CERN

The big questions

- What is the origin of Dark Matter / Energy ?
- What is the origin of matter/anti-matter asymmetry ?
- What is the origin on neutrino masses the flavour puzzle ?
- What is the origin of the Electro-weak symmetry breaking ?
- What is the solution to hierarchy problem ?

The Standard Model does not provide answers to these questions

There is new physics out there (beyond the Standard Model)

Collider or not collider?

- No single experiment can:
 - explore all directions at once
 - guarantee discovery
- Design projects that can deliver:
 - precision
 - (inclusive) sensitivity to new as many as possible scenarios of new physics
 - clear yes/no answers to concrete scenarios

The Higgs particle

is new physics ...

elementary scalar ?

self-interacting?

"let's put it under a microscope"

Why studying the Higgs properties

After Higgs discovery, still many open questions:

- Is the Higgs composite or fundamental?
 - Is there more than I Higgs
- Does it generate light fermion masses? What about neutrino masses?
- does it couple to dark matter?
- nature of the Higgs potential
 - and its relation to the EWPT

Need to go beyond the LHC precision measurements

Long term strategy

Case made by the European Strategy, updated by CERN Council in 2020

"An electron-positron Higgs factory is the highest priority collider"

"For the longer term, the European Particle Physics community has the ambition to operate a proton-proton collider at the highest achievable energies."

- HL-LHC will collect data until ~ 2040,
 - big physics projects take ~20 yrs time to plan and build

NOW is the right time top start defining the future of HEP.

The FCC

Within the FCC collaboration (CERN as host lab), 5 main accelerator facilities have been studied:

- ee-collider (FCC-ee):
 - as a first step
- pp-collider (FCC-hh)
 - defines infrastructure requirements
 - $16T \rightarrow 100 \text{ TeV}$ in 100 km tunne
- ep collider (FCC-eh)
- HE-LHC :
 - 27 TeV (16T magnets in LHC tunnel)
- Low E FCC-hh
 - 100 km 6T 37 TeV

CERN-FCC-PHYS-2019-0001

CDRs and European Strategy documents have been made public in Jan. 2019 https://fcc-cdr.web.cern.ch/

Future e+e- machines

- Maximum $E_{CM} \sim 350 \text{ GeV}$ (limited by synchrotron radiation)
- Very high luminosity at low energy (Z > W > H > t)
- Allows multiple experiments

Parameter	Z	w	н	t		
Cm E [GeV]	91.2	160	240	350		
FCC-ee						
L [10 ³⁴ cm ⁻² s ⁻¹]	200	28	8.5	1.8		
Years op.	4	2	3	5		
Int. L / 2 IP [ab ⁻¹]	150	10	5	1.5		
CEPC						
L [10 ³⁴ cm ⁻² s ⁻¹]	32	10	3			
Years op.	2	1	7			
Int. L / 2 IP [ab ⁻¹]	16	2.6	5.6			

- Can reach high energies
- High lumi at high energies (ttH, HH, H ...)

CLIC

sqrt(s)	1.5 TeV	3 TeV
Lumi	2.5 ab -1	5 ab -1

e+e-vspp

e+e- collisions

- e+/e- are point-like
- \rightarrow Initial state well defined (*E*, **p**), polarisation
- → High-precision measurements

Clean experimental environment

- → (Almost) Trigger-less readout
- → Low radiation levels

Superior sensitivity for electro-weak states

Circular e+e- colliders can deliver very large
 luminosities
 Linear collider can reach higher energies (>1TeV)

pp collisions

Proton is compound object

- → Initial state not known event-by-event
- → Limits achievable precision

High rates of QCD backgrounds

- → Complex triggering schemes
- → High levels of radiation
- High cross-sections for colored-states

High-energy **circular** pp colliders feasible. R&D on high field magnets needed.

Future e+e- machines cross sections

- Physics background are "small" in e⁺e⁻
 - s-channel ~ I/s
 - t-channel ~ log s

10-10 at hadron colliders

Linear or circular ?

luminosity ultimate precision with circular high mass reach with linear

Carbon footprint/energy consumption

Circular colliders have a:

- much larger instantaneous luminosity
- operate several detectors

Circular is at CERN:

where electricity is already almost carbon-free (and will be even more so in 2048)

Energy consumption / Higgs with 4IP Circular ~ Linear / 10 Carbon footprint / Higgs with 4IP FCC-ee ~ CLIC / 10 ~ ILC / 100

Timeline of the integrated FCC project

Now is perfect time to join the effort and contribute to the feasibility study

FCC-ee

15 (20?) years of operations

	Z pole	? H pole ?	ww	ZH	ttbar
√ s [GeV]	88 - 91 - 94	125	157 - 161	240	350 - 365
Lumi / IP [10 ³⁴ cm ² s ⁻¹]	182	80	19.4	7.3	1.33
Int. lumi / 4IP [ab ⁻¹ / yr]	87	38	9.3	3.5	0.65
N _{years}	4	5	2	3	5
N _{events}	8 Tera	8 K	300 M	2 M	2 M

Unprecedented luminosity

- 100K Z bosons / second
 LEP dataset in 1 minutes
- 10k W boson / hour
- 2k Higgs bosons / day
- 3k tops / day

Detector requirements - machine

• Requirements for Higgs and above have been studied to some extent by LC:

- have to be revised by FCC-ee
- we want a detector that is able to withstand a large dynamic range:
 - in energy (√s = 90 365 GeV)
 - in luminosity (L = $10^{34} 10^{36} \text{ cm}^2/\text{s}$)
- most of the machine induced limitations are imposed by the Z pole run:
 - large collision rates ~ 33 MHz and continuous beams
 - no power pulsing possible
 - large event rates ~ 100 kHz
 - fast detector response / triggerless design challenging (but rewarding)
 - high occupancy in the inner layers/forward region (Bhabha scattering/γγ hadrons)
 - o beamstrahlung
- complex MDI: last focusing quadrupole is ~ 2.2m from the IP
 - magnetic field limited to B = 2T at the Z peak (to avoid disrupting vertical emittance/inst. Lumi via SR)
 - limits the achievable track momentum resolution
 - "anti"-solenoid
 - limits the acceptance to ~ 100 mrad

Detector concepts

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker;
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?
 - ...

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system
- Very active community
 - Prototype designs, test beam campaigns, ...

- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies
- FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

Measurement landscape

Detector requirements - physics

Higgs factory

track momentum resolution (low X_0)

IP/vertex resolution for flavor tagging

PID capabilities for flavor tagging

jet energy/angular resolution (stochastic and noise) and PF **Flavor** "boosted" B/D/*τ* factory:

track momentum resolution (low X_0)

IP/vertex resolution

PID capabilities

Photon resolution, pi0 reconstruction QCD - EWK most precise SM test

acceptance/alignment knowledge to 10 µm

luminosity

BSM feebly interacting particles

Large decay volume

High radial segmentation - tracker - calorimetry - muon

> impact parameter resolution for large displacement

> > timing

triggerless

Tera Z - Electroweak precision observables

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
$m_{\rm Z} (\rm keV)$	91186700 ± 2200	4	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
				Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({\rm m}_{\rm Z}^2)(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate
R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m}_{\rm Z}^2) \ (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$R_{\rm b}~(\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons
				stat. extrapol. from SLD
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$A_{\rm FB}^{\rm pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	τ polarization asymmetry
				τ decay physics
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial alignment
τ mass (MeV)	1776.86 ± 0.12	0.004	0.04	momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron separation
m _W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{\rm W} ~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)$	1170 ± 420	3	small	from R_{ℓ}^{W}
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns
$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
$\Gamma_{\rm top} \ ({\rm MeV/c}^2)$	1410 ± 190	45	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.10	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
ttZ couplings	$\pm 30\%$	0.5 - 1.5%	small	From $\sqrt{s} = 365 \text{GeV}$ run

 $10^5 \times \text{LEP}$ events $\rightarrow 100 \times \text{reduction}$ in stat $\rightarrow 10 \times \text{increase}$ in NP scale reach

name of the game:

→ bring down systematics down to stat. level

1/ Λ new physics (SMEFT) \rightarrow 30 – 70 TeV

Tera Z flavour

With 5x1012 Z, FCC-ee is of special relevance for b, c and tau physics

Production rate @Z pole an 10x more than the anticipated Belle II statistics

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \; / \; \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

	Belle2		
Attribute	$\Upsilon(4S)$	pp	Z^0
All hadron species		1	~
High boost		1	1
Enormous production cross-section		1	
Negligible trigger losses	1		1
Low backgrounds	1		1
Initial energy constraint	~		(•

- Sensitivity to low momentum particles
- Excellent momentum resolution
- Excellent Impact parameter resolution

Bs $\rightarrow \mu\mu$ mass resolution driven by the tracking Low mass tracker essential

Tera Z flavour

- $\mathsf{B}_{_{\! \mathrm{s}}}\!\to\mathsf{K}^{*}\!\,\tau\,\,\tau\,$ important channel to study LFU in b—s transitions
 - focusing on 3-prong τ decays
- very rich signature with :
 - 8 visible particles (1K, 7π) Ο
 - 1 secondary vertex and tertiary vertices Ο
- very complex analysis: many backgrounds and combinatorics
- $B_s \rightarrow K^* \tau \tau$ sensitivity driven by **vertex resolution** to make maximal use of kinematic constraints

IDEA

Tera Z - new physics

WW threshold

syst. uncertainties on hadronic W decay modeling

requires excellent flavour tagging

Flavor tagging

Light tracker, first measurement layer close to IP:

- excellent b/c-tagging performance
 - crucial to measure and to isolate clean H→bb/cc/gg samples

Particle ID

- Particle Id for **strange** jet identification:
 - ToF at low momenta
 - dN/dX at high momenta
- Possible to measure strange Yukawa at FCC-ee ?

Тор

 $\Gamma^{ttV}_{\mu}(k^{2}, q, \bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^{V}_{1V}(k^{2}) + \gamma_{5} F^{V}_{1A}(k^{2}) \right) + \frac{\sigma_{\mu\nu}}{2m_{t}} \left(q + \bar{q} \right)^{\nu} \left(F^{V}_{2V}(k^{2}) + \gamma_{5} F^{V}_{2A}(k^{2}) \right) \right\}$

Top mass and width

 $\delta(m_t) \sim 10-20 \text{ MeV}$

20x improvement w.r.t LHC Top EWK couplings (ttZ)

ttZ coupling required for ttH/ttZ interpretation at the FCC-hh requires excellent flavour tagging

The FCC-ee as a Higgs factory

 $e+e^- \rightarrow ZH$ largest event rate at $\sqrt{s} = 240$ GeV

- (2) 10⁶ e⁺ e⁻ events with 5(10) ab⁻¹
 - target: per mille stat. limited precision
 - plus few 100k events at $\sqrt{s}=350-365$ GeV
 - of which 30% in WW fusion channel (needed for Γ_H)

Higgs @FCC-ee vs. HL-LHC?

Need to

improve

production cross section uncertainties are typically much smaller that @pp colliders (no PDFs, no luminosity uncertainty)

		HL-LHC (*)	FCC-ee
	δГн / Гн (%)	SM (**)	1.3
	δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
	δднww / днww (%)	1.7	0.43
	δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
	δg _{Hcc} / g _{Hcc} (%)	~70	1.21
	δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
	δg _{Ηττ} / g _{Ηττ} (%)	1.9	0.74
(δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0
	δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
{	δg _{Htt} / g _{Htt} (%)	3.4	—
/	δg _{HZγ} / g _{HZγ} (%)	9.8	—
	δдннн / дннн (%)	50	~40 (indirect)
	BRexo (95%CL)	$BB_{inv} < 2.5\%$	< 1%

Caveat: cannot measure rare Higgs decays or production modes to high precision (because lack of statistics)

Higgs (a) FCC-ee, $\sqrt{s} = 240$ GeV

Higgs tagged by a Z, Higgs mass from Z recoil

Higgs recoil mass measurement \rightarrow production cross section:

- I0⁶ Higgs produced @ FCC-ee
- rate ~ $g_Z^2 \rightarrow \delta g_Z/g_Z \sim 0.1$ %

provides absolute g_Z coupling in e+e-

- Then measure $ZH \rightarrow ZZZ$
- rate ~ $g_Z 4 / \Gamma_H \rightarrow \delta \Gamma_H / \Gamma_H \sim 1 \%$
- Then measure $ZH \rightarrow ZXX$
- rate ~ $g_Z^2 g_X^2 / \Gamma_H \rightarrow \delta g_X/g_X \sim 1\%$

BUT limited statistics:

- for rare decay modes
- HH production

What can $\sqrt{s} = 365$ GeV bring ?

WW fusion added value

- vvH \rightarrow vvbb ~ $g_{W^2} g_{b^2} / \Gamma_H$
 - vvbb / (ZH(bb) ZH(WW) ~ g_Z^4 / $\Gamma_H = R$
 - Γ_H precision at 1%
- Then do vvH \rightarrow vvWW ~ g_W^4 / Γ_H
 - R / vvWW ~ g_W^4 / g_Z^4
 - gw precision to few permil

Running at the top does not simply add statistics it exploits complementary production mode to improve constraints

 $\Gamma_H \propto \frac{\sigma \left(e^+e^- \to \nu \bar{\nu} H, H \to bb\right) \sigma \left(e^+e^- \to ZH\right)^2}{\sigma \left(e^+e^- \to ZH, H \to bb\right) \sigma \left(e^+e^- \to ZH, H \to WW\right)}$

Mass

$$\sin^2 \theta_W = \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{A^2}{1 - \Delta r}$$

- Why measure Higgs mass:
 - O(10 MeV) need for permil precision of g_Z and g_W
 - $O(\Gamma_H = 4 \text{ MeV})$ can constrain electron Yukawa
- Defines stringent detector constraints

∆r ~	ln(m _µ)
∆r ~	m,² ''
∆r ~	new physics?

tracking system	Δm _н (MeV) stat.only	Δm _н (MeV) stat + syst
IDEA 2T	3.49	4.27
Perfect	2.67	3.44
IDEA 3T	2.89	3.97
CLD 2T	4.56	5.32

using µµ channel

~150 MeV in ATLAS/CMS

- sensitivity dominated by the $Z(\mu\mu)$ final state
 - superior momentum resolution, driven by tracking
- track momentum resolution limits sensitivity if > beam energy spread (BES = 0.182% at 240 GeV, i.e 222 MeV)
 - multiple-scattering limit < BES
 - for CLD ~ 30% above
 - transparent tracker is key

ZH inclusive cross-section

- Crucial is to measure HZZ coupling strength in a model-independent way
- Unique to e+ e colliders because of known initial state, not possible at hadron colliders

$$\Gamma_H \propto \frac{\sigma \left(e^+e^- \to ZH, H \to ZZ\right)^2}{\sigma \left(e^+e^- \to ZH\right)}$$

- Challenge to ensure model-independence ("easy for Z(II)") — no preference to given final state
- FCC-ee sensitivity prediction to $\sim 0.15\%$

Example analysis in Z(II)H(XX) final state:

Reach **0.6% (stat. only)**, combined muon and electron channels

Higgs self-coupling at the FCC-ee

Infer self-coupling sensitivity from inclusive recoil mass cross-section measurment

- Use $\sqrt{s} = 240$ AND 365 GeV to resolve $\kappa_{\lambda}, \kappa_{VV}$ degeneracy ...
- $\delta\kappa_{\lambda} \sim 25\%$ with 4IP from global fit

Electron Yukawa @ $\sqrt{s} = 125$ GeV

- take advantage of extreme luminosity at 125 GeV
- s-channel production with beam mono-chromatisation at $\sqrt{s} = 125$ GeV
 - Requires prior knowledge of m_H
 - ISR+FSR leads to 40% + with beam spread ~ Γ_H another 45%
 - plus potentially uncertainty on the Higgs mass

can hope for ~ 2σ with 5 years and 4 IPs

H→jj (di-lepton final state)

Analysis channels

- $Z(\rightarrow LL)H$: clean but smaller signal acceptance
- $Z(\rightarrow vv)H$: good compromise b/ signal acceptance and purity
- ► Z(→hadrons)H: Largest signal acceptance, but.. jets [work in progress]

j=b,c,s,g
H→jj (missing energy final state)

SIG-vs-BKG discrimination

- Different SIG and BKGs shapes in $m_{rec} \& m_{jj}$
- Bump hunt in 2D
 - simultaneous fit in all categories

N=2 Durham k_T exclusive clustering

strange Yukawa $\delta(\kappa_S) \sim 50\%$!!!

most likely 3σ within reach using the fully hadronic channel still ...

4 free-floating signal strength fit

j=b,c,s,g

Results @10 ab⁻¹

Systematics:

- 5 (0.1)% BKG (SIG)
 - uncorrelated b/w processes
 BKG: constrained to O(1)%
- Limited MC statistics

Z(→vv)H(→qq)	bb	СС	SS	gg
δμ/μ (%)	0.3	2.1	100	0.8
				-

 $*|BR_{H\rightarrow ss}| < 1.3$

room to contribute

H→jj (detector requirements)

j=b,c,s,g

Hadronic resolution critical for all $H \rightarrow jj$ Powerful PID essential for strange Yukawa

H→gluons

40% H → gg for 0.1% H → cc 0.01% H → bb

- with powerful gluon taggers:
 - measure Higgs to gluon coupling
 - exploit it as a gluon factory
 - I00k extra clean gluon events
 - study gluon radiation and jet properties

Higgs at FCC-ee: to be studied ...

Higgs experimental programme widely covered, but still some key analyses missing/not started

Higgs width - Preliminary studies started, more person power needed

- all ZH(ZZ) final states to be studied 2,4,6 jets
- multi jet environment 6 jets final state ZH(ZZ*), ZH(WW*) challenging

```
Possibility to also exploit 365 GeV (ee \rightarrow vvH)

Taus - Reconstruction/identification/tagging

- Coupling strength, angular, CP

Rare (\gamma\gamma, \mu\mu, Z\gamma, qq)

Exotic (FCNCs H\rightarrowbs, ... )
```

Angular analysis, differential measurements

NOW IS A PERFECT TIME TO JOIN AND MAKE AN IMPACT

~ 2 more years to complete the feasibility study

Coupling measurements at ee vs hh

At pp colliders we can only measure:

$$\sigma_{\text{prod}} BR(i) = \sigma_{\text{prod}} \Gamma_i / \Gamma_H$$

 \rightarrow we do not know the total width

In order to perform global fits, we have to make model-dependent assumptions

Instead, by performing measurements of ratios of BRs at hadron colliders:

BR(H
$$\rightarrow$$
XX) / BR(H \rightarrow ZZ) \approx g_X² / g_Z²
from e⁺e⁻

We can "convert" **relative measurements into absolute** via gz thanks to e⁺e⁻ measurement

 \rightarrow synergy between lepton and hadron colliders

Why measuring Higgs @100TeV?

- 100 TeV provides unique and complementary measurements to ee colliders:
 - Higgs self-coupling
 - top Yukawa
 - Higgs \rightarrow invisible
 - rare decays (BR(μμ), BR(Zγ), ratios, ..) measurements will be statistically limited at FCC-ee

Need to improve

	HL-LHC	FCC-ee
δΓ _Η / Γ _Η (%)	SM	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δднww / днww (%)	1.7	0.43
δg_{Hbb} / g_{Hbb} (%)	3.7	0.61
δg_{Hcc} / g_{Hcc} (%)	~70	1.21
δg_{Hgg} / g_{Hgg} (%)	2.5 (gg->H)	1.01
δg _{Ηττ} / g _{Ηττ} (%)	1.9	0.74
δд _{нµµ} / д _{нµµ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δднŧt / днŧt (%)	3.4	—
δg _{HZγ} / g _{HZγ} (%)	9.8	—
• δgннн / gннн (%)	50	40
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	< 1%

Large rates for rare modes and HH production at FCC-hh

 \rightarrow complementary to e⁺e⁻

Reach at high energies (III)

How does the rate of a given process (e.g. single Higgs production) scale from 14 TeV to 100 TeV

$$\frac{\text{cross-section }(\sqrt{s} = 100 \text{ TeV})}{\text{cross-section }(\sqrt{s} = 14 \text{ TeV})} \approx L_1 / L_2 \approx (s_2 / s_1)^a \approx (100 / 14)^{2a}$$

	σ(100)/σ(14)
ggH	15
НН	40
ttH	55
Н (рт > I TeV)	400

Very large rate increase by increasing center of mass energy

NB: this improvement only comes from the cross-section (neglects integrated luminosity)

Summary of Higgs direct measurements

Observable	Parameter	Precision (stat.)	Precision (stat.+syst.+lumi.)
$\mu = \sigma(H) \times B(H \to \gamma \gamma)$	δμ/μ	0.1%	1.45%
$\mu = \sigma(H) \times B(H \to \mu\mu)$	δμ/μ	0.28%	1.22%
$\mu = \sigma(H) \times B(H \to 4\mu)$	δμ/μ	0.18%	1.85%
$\mu = \sigma(H) \times B(H \to \gamma \mu \mu)$	δμ/μ	0.55%	1.61%
$\mu = \sigma(HH) \times B(H \to \gamma\gamma) B(H \to b\bar{b})$	δλ/λ	5%	7.0%
$R = B(H \rightarrow \mu\mu)/B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
$R = B(H \rightarrow \mu\mu\gamma)/B(H \rightarrow \underline{A}\mu)$	$\delta R/R$	0.58%	1.82%
$R = \sigma(t\bar{t}H) \times B(H \to b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \to b\bar{b})$	$\delta R/R$	1.05%	1.9%
$B(H \rightarrow invisible)$	<i>B</i> @95%CL	1×10-4	2.5×10-4

$\delta R/R$	HE-LHC	LE-FCC	FCC-hh
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	1.7%	1.5%	0.8%
$R = B(H \rightarrow \mu\mu)/B(H \rightarrow 4\mu)$	3.6%	2.9%	1.3%
$R = B(H \rightarrow \mu \mu \gamma) / B(H \rightarrow \mu \mu)$	8.4%	6%	1.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	3.5 %	2.8%	1.4%

- Percent level precision on $\sigma \times BR$ in most rare decay channels achievable only at 100 TeV
- Percent level precision on couplings if HZZ coupling known from FCC-ee (to 0.2%)

Summary direct Higgs couplings at the FCC

	HL-LHC	FCC-ee	FCC-hh
δГн / Гн (%)	SM	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δднww / днww (%)	1.7	0.43	tbd
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	—	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	—	0.91 (*)
δдннн / дннн (%)	50	~30 (indirect)	5
BR _{exo} (95%CL)	BR _{inv} < 2.5%	< 1%	BR _{inv} < 0.025%

* From BR ratios wrt B(H \rightarrow 4l) @ FCC-ee

** From pp \rightarrow ttH / pp \rightarrow ttZ, using B(H \rightarrow bb) and ttZ EW coupling @ FCC-ee

Future of HEP

The FCC design study is establishing the feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology

Both FCC-ee and FCC-hh have outstanding physics cases

Backup

Vertex detectors

Keywords: thinning (40-50 $\mu m)$, bending (r \gtrsim 10 mm), stitching (one crystal per half barrel)

- Many conditions/requirements common between ALICE and e⁺e⁻ colliders
 - Moderate radiation environments
 - No need for picosecond timing
 - High resolution and low multiple scattering is key
- FCC-ee detector simulation
 - □ Closer (■), lighter (△): Substantial improvement on impact parameter resolution in particular at low momenta

Tracking detectors

Pros:

- Very low material budget
- Proven technologi: KLOE at Daqne
- Continous tracking; advantage for secondary vertex finding
- Particle ID via dE/dx (dN/dx) measurement

Challenges:

 Need to prove operation at ~100 kHz FCC-ee physics rate and realistic backgrounds via full simulation studies

Pros:

- Very precise space points
- Proven technologi, e.g. LHC detectors
- No gas system

Challenges:

- No precise Particle Identification
 - Possibly TOF
- Optimisation of sensor thickness for lower material budget
- Design of (light) cooling system for operation at continous collisions

Detector concepts

Optimised for PFA:

- Very fine resolution "Imaging Calorimeters"
 - Linear Colliders: ILD, SiD, CLICdp
 - Circular Colliders: CLD, CEPC Baseline

Example, CLD

HCAL

- 44 layers, 19 mm steel absorber, 5.5 (+1) λ
- 3 mm thick scintillator tiles with 3 × 3 cm² granularity

ECAL

- 40 layers, 1.9 mm tungsten absorbers, 22 X₀
- 0.5 mm thick silicon sensors with 5 × 5 mm² granularity

• Optimisation studies ongoing

Si-W ECAL (ALICE FoCAL)

0,5×0,5 cm² ×15 (→30) Si layers + W 0,003×0,003 cm² × 24 MIMOSA layers + W

[Scint-W ECAL] AHCAL

0,5×4,5 cm² ×30 Scint+SiPM lay. + SS 3×3 cm² × 38 Scint+SiPM lay. + SS

1×1 cm² × 48 layers GRPC + SS

Detector concepts (Dual Readout calorimeters)

- Measure simultaneously:
 - Scintillation signal (S)
 - □ Cherenkov signal (C) (mainly from e^{+/-})
- ◆ Calibrate both signals with e⁻
- Unfold event-by-event using C and S signals to obtain energy corrected for noncompensation (h/e < 1)

crystal option

Detector concepts (LAr calorimetry)

- Good experience with noble liquid ECALs in a number of experiments, e.g. DØ, H1, NA48/62, ATLAS
 - \square Good energy resolution, $\sigma_{EM} \sim 10\%/VE$
 - □ Linearity, uniformity, stability of response
 - Low systematics
- Baseline design for FCC-ee detector
 - □ 1536 straight inclined (50.4°) 1.8mm Pb absorber plates, 22 X₀
 - Multi-layer PCBs as readout electrodes. Segmentation:
 - * 11 longitudinal compartments
 - * $\Delta\theta$ = 10 (2.5) mrad for regular (1st comp. strip) cells,
 - * $\Delta \phi$ = 8 mrad
 - Implemented in FCC-SW Fullsim
 - * $\sigma_{EM} \sim 9\%/VE$
 - Definition of end-cap geometry ongoing
 - **□** ECAL shares cryostat with coil (as in ATLAS)
 - * Coil outside ECAL
 - Possible options, R&D ongoing
 - * LKr or Lar actives; W or Pb absorber
 - * Al or carbon fibre cryostat
 - Warm or cold electronics

Possible future colliders: pp

Pros:

- high center of mass, not limited by synchrotron radiation ~ $(m_e/m_p)^4$
- high luminosity \rightarrow high rates
- large cross-sections for strong production

<u>Cons:</u>

- large backgrounds QCD ($\alpha_s \sim 10 \alpha_{EM}$)
- collide partons (not all ECM available)
- pile-up (due to high lumi)

For fixed size, limited only by field strength B

- Discovery machines for heavy new states
- Thanks to high rates, well suited for precision

p[TeV/c] = 0.3 B[T] R[km]

High energy hadron machines

sqrt(s)	27 TeV	sqrt(s)	37 TeV	sqrt(s)	100 TeV
Lumi	15 ab-1	Lumi	15 ab-1	Lumi	30 ab-1
В	16 T	В	6 T	В	16 T
circ.	27 km	circ.	100 km	circ.	100 km

54

A 100 TeV proton-proton collider

Explore the energy frontier:

- Can directly produce heavy resonances up to 50 TeV
- Can completely exclude a class of WIMP dark matter candidates that are not accessible at the LHC (EWK doublets-triplets)

Measure SM to unprecedented precision:

- Gives direct and indirect handles on the Higgs potential and the electro-weak phase transition EWPT
- Produces 10¹⁰ Higgs bosons, giving access to percent level precision on most couplings (including rare decay channels)
- Probe the SM in a completely new dynamical regime (where EW symmetry is restored)

Precision vs. sensitivity

B

- We often talk about "precise" SM measurements. What we actually aim at is "sensitive" tests of the Standard Model, where sensitive refers to the ability to reveal BSM behaviours.
- Sensitivity may not require extreme precision. Going after "sensitivity", rather than just precision, opens itself new opportunities .
- For example, in the context of dim. 6 operators in EFT, some operators grow with energy:

R measurement:

$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2$$
 \Rightarrow precision probes large Λ

 e.g. $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$
 $\sigma(p_T > X):$
 $\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$
 \Rightarrow kinematic reach probes large Λ

e.g. $\delta O=15\%$ at Q=1 TeV $\Rightarrow \Lambda \sim 2.5$ TeV

(SM) Physics processes @high energy

Total pp cross-section and Minimum bias multiplicity show a modest increase from 14 TeV to 100 TeV

 \rightarrow Levels of pile-up will scale basically as the instantaneous luminosity.

- Inclusive cross-section for relevant processes (single and HH) show a significant increase.
 - x 20-50 increase
 - \rightarrow interesting physics sticks out more !

Higgs @threshold

SM Physics produced at threshold is more forward @100TeV

 \rightarrow in order to maintain sensitivity need large rapidity (with tracking) and low p_T coverage

<u>Goals:</u>

- Precision spectroscopy and calorimetry up to $|\eta| < 4$
- Tracking and calorimetry up to $|\eta| < 6$

$x_{min} \sim M^2 / s$

Higgs at large pt

p_τ (GeV) 10⁵ $\sigma(p_{T,H} > p_{T,min})$ (fb) Solid: exact mtop dependence Dashes: EFT 10^{4} 10³ $N(p_T > p_{T, min})$ 10² 101 10⁰ 1000 500 1500 2000 $p_{T,min}$ (GeV)

Huge rates at large pT:

- > 10⁶ Higgs produced with p_T > 1 TeV
- Higher probability to produce large p_T Higgs from ttH/VBF/VH at large
- Even rare decay modes can be accessed at large pT

Opportunity to measure the Higgs in a new dynamical regime

• Higgs p_T spectrum highly sensitive to new physics.

- highly granular sub-detectors:
 - Tracker pixel: 10 μ m @ 2cm $\rightarrow \sigma_{\eta x \varphi} \approx 5$ mrad
 - Calorimeters: 2 cm @ 2m $\rightarrow \sigma_{\eta \times \varphi} \approx$ 10 mrad
- good energy/pT resolution at large pT:

•
$$\sigma_p / p = 2\%$$
 @ I TeV

The FCC-hh detector

Higgs physics at future hadron colliders

• Large Higgs production rates:

- access (very) rare decay modes (eg. 2nd gen,), complementary to ee colliders
- push to %-level Higgs self-coupling measurement

Large dynamic range for H production (in p^H, m(H+X), ...):

- new opportunities for reduction of syst. uncertainties (TH and EXP)
- develop indirect sensitivity to BSM effects at large Q^2 , complementary to that emerging from precision studies (e.g. decay BRs) at $Q \sim m_H$

• High energy reach:

- direct probes of BSM extensions of Higgs sector (e.g. SUSY)
- Higgs decays of heavy resonances
- Higgs probes of the nature of EW phase transition (strong 1st order? crossover?)

Single Higgs production @FCC-hh

	σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)	
ggH (N ³ LO)	49 pb	803 pb	16	
VBF (N ² LO)	3.8 pb	69 pb	16	
VH (N ² LO)	2.3 pb	27 рb	11	
ttH (N ² LO)	0.5 pb	34 pb	55	

	N ₁₀₀	N_{100}/N_8	N_{100}/N_{14}				
$gg \to H$	16×10^{9}	4×10^{4}	110				
VBF	1.6×10^{9}	5×10^4	120				
WH	3.2×10^{8}	2×10^4	65				
ZH	2.2×10^{8}	3×10^4	85				
$t\bar{t}H$	7.6×10^{8}	3×10^5	420				
† †							
	Factor:	1/100	1/10				
reduction in stat. unc.							

 $N_{100} = \sigma_{100 \text{ TeV}} \times 20 \text{ ab}^{-1}$ $N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$ $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

Large statistics in various Higgs decay modes allow:

- for % level precision in statistically limited rare channels ($\mu\mu$, Z γ)
- in systematics limited channels, to isolate cleaner samples in regions (e.g. @large Higgs p_) with :
 - higher S/B
 - smaller (relative) impact of systematic uncertainties

Top Yukawa (production)

- production ratio $\sigma(ttH)/\sigma(ttZ) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- assuming g_{ttZ} and κ_b known to 1% (from FCC-ee),

\rightarrow measure y_t to 1%

Higgs decays: $\gamma\gamma$ - ZZ - Z γ - $\mu\mu$

- I% systematics on (production x luminosity), meant as a reference target. Assumes good theoretical progress over the next years, and reduction of PDF+as uncertainties with HL-LHC + FCC-ee.
- $e/\mu/\gamma$ efficiency systematics (shown on the right). In situ calibration, with the immense available statistics in possibly new clean channels ($Z \rightarrow \mu \mu \gamma$), will most likely reduce the uncertainties.
- All final states considered here rely on **reconstruction of m_H** to within few GeV.
 - backgrounds (physics and instrumental) to be determined with great precision from sidebands (~ infinite statistics)
 - Impact of pile-up: hard to estimate with today's analyses.

 \rightarrow Focus on high-p_T objects will help to decrease relative impact of pile-up

- Following scenarios are considered:
 - δ_{stat} \rightarrow stat. only (I) (signal + bkg)
 - δ_{stat} , $\delta_{\text{eff}} \rightarrow \text{stat.} + \text{syst.}$ (II)
 - δ_{stat} , δ_{eff} , $\delta_{prod} = 1\% \rightarrow stat. + syst. + prod (III)$

Higgs decays (signal strenth)

- study sensitivity as a function of minimum p_T(H) requirement in the γγ, ZZ(4I), μμ and Z(II)γ channels
- low pT(H): large statistics and high syst. unc.
- large pT(H): small statistics and small syst. unc.
- O(1-2%) precision on BR achievable up to very high pT (means 0.5-1% on the couplings)

- 1% lumi + theory uncertainty
- p_T dependent object efficiency:
 - $\delta\epsilon(e/\gamma) = 0.5 (1)\%$ at $p_T \rightarrow \infty$
 - $\delta\epsilon(\mu) = 0.25 \ (0.5)\%$ at $p_T \rightarrow \infty$

Ratios of $BR(H \rightarrow XX) / BR(H \rightarrow ZZ)$

- measure ratios of BRs to cancel correlated sources of systematics:
 - luminosity
 - object efficiencies
 - production cross-section (theory)
- Becomes absolute precision measurement in particular if combined with $H \rightarrow ZZ$ measurement from e^+e^- (at 0.2%)

H→invisible

- Measure it from H + X at large p_T(H)
- Fit the E_T^{miss} spectrum
- Constrain background p_T spectrum from $Z \rightarrow vv$ to the % level using NNLO QCD/EW to relate to measured Z,W and γ spectra (low stat)
- Estimate $Z \rightarrow vv$ ($W \rightarrow Iv$) from $Z \rightarrow ee/\mu\mu$ ($W \rightarrow Iv$) control regions (high stat).

Standalone 100 TeV Higgs measurements

• Following the principle of reducing as much as possible the impact of systematics assumptions on future measurements, additional ratio measurements:

W[e]Z[τ] W[e]H W[ℓ]Z[τ] W[ℓ]H[$\tau\tau$]

 $\times \epsilon_{\tau} L$

1.3E5

6.0E4

3.4E4

(pb)

1.0E-1

6.3E-2

3.8E-2

1.6E-2

7.9E-3

 $\delta R/R$

5.9E-3

7.7E-3

1.0E-2

 $\times \epsilon_{\tau} L$

3.8E4

2.4E4

1.4E4

 $\sigma(WH[\rightarrow\gamma\gamma]) / \sigma(WZ[\rightarrow e^+e^-]))$ $\sigma(WH[\rightarrow\tau\tau]) / \sigma(WZ[\rightarrow\tau\tau])$

 $\sigma(WH[\rightarrow bb]) / \sigma(WZ[\rightarrow bb])$

 p_T^{min} (GeV)

100

150

200

300

400

(pb)

2.1E-2

1.0E-2

5.6E-3

2.1E-3

9.8E-4

 $G_W = g_{HWW}^2 \times BR(H \to \gamma \gamma)$ $G_\tau = g_{HWW}^2 \times BR(H \to \tau \tau)$

$$G_b = g_{HWW}^2 \times BR(H \to bb)$$

parton level study

í I										
	p_T^{min}	W[e]+bb	W[e]Z[bb]	W[e]+bb	W[e]H	$W[\ell]$ bb	$W[\ell]Z[bb]$	$W[\ell]$ bb	$W[\ell]H[bb]$	$\delta R/R$
_	(GeV)	(pb)	(pb)	(pb)	(pb)	$ imes arepsilon_b$ L	$ imes arepsilon_b$ L	$ imes arepsilon_b \operatorname{L}$	$ imes arepsilon_b$ L	
		$m[bb] \in m_Z$		$m[bb] \in m_H$		$m[bb] \in m_Z$		$m[bb] \in m_H$		
	200	3.3E-2	2.5E-2	2.3E-2	3.8E-2	9.9E5	7.5E4	6.9E5	6.6E5	2.5E-3
	300	1.2E-2	9.2E-3	8.8E-3	1.6E-2	3.6E5	5.5E4	2.6E5	2.8E5	3.2E-3
	400	5.5E-3	4.3E-3	4.1E-3	7.9E-3	1.7E5	2.6E5	1.2E5	1.4E5	4.5E-3
	600	1.7E-3	1.4E-3	1.3E-3	2.6E-3	5.1E4	8.4E4	3.9E4	4.5E4	7.8E-3
	800	6.8E-4	6.2E-4	5.0E-4	1.2E-3	2.0E4	3.7E4	1.5E4	2.1E4	1.1E-2

	p_T^{min}	W[e]Z[e]	W[e]H	$W[\ell]Z[e]$	$W[\ell]H[\gamma\gamma]$	$\delta R/R$
	(GeV)	(pb)	(pb)	imes L	\times L	
	100	2.1E-2	1.0E-1	1.3E6	1.4E4	8.5E-3
Ì	150	1.0E-2	6.3E-2	6.0E5	8.7E3	1.1E-2
	200	5.6E-3	3.8E-2	3.4E5	5.2E3	1.4E-2
	300	2.1E-3	1.6E-2	1.3E5	2.2E3	2.1E-2

also: $\sigma(Z[\nu\nu]H[\rightarrow\gamma\gamma]) / \sigma(Z[\nu\nu]Z[\rightarrow e^+e^-])$

Higgs self-coupling

gluon fusion

- Very small cross-section due to negative interference with box diagram
- HL-LHC projections : $\delta k_{\lambda\,\prime}\,k_{\lambda}\approx 50\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40 \text{ (and } \text{Lx}10)$
 - x400 in event yields and x20 in precision
- main channels studied:
 - bbyy (most sensitive discussed here)
 - bbττ
 - bbZZ(4l)
 - bbbb

Higgs pair production at the FCC-hh

 \sim

Self-coupling at the FCC-hh

2004.03505 [hep-ph]

- Channels: bbyy (golden channel)
 - bbττ
 - bbbb
 - bbZZ(4I)

 Defined 3 scenarios with various detector assumptions and systematics:

events

parameterisation	scenario I	scenario II	scenario III
b-jet ID eff.	82 - 65%	80-63%	78-60%
b-jet c mistag	15-3%	15-3%	15-3%
b-jet l mistag	1-0.1%	1 - 0.1%	1-0.1%
τ -jet ID eff	80-70%	78-67%	75-65%
τ -jet mistag (jet)	2-1%	2-1%	2-1%
τ -jet mistag (ele)	0.1-0.04%	0.1- $0.04%$	0.1 0.04%
γ ID eff.	90	90	90
jet $\rightarrow \gamma$ eff.	0.1	0.2	0.4
$m_{\gamma\gamma}$ resolution [GeV]	1.2	1.8	2.9
m_{bb} resolution [GeV]	10	15	20

Self-coupling at the FCC-hh

• Expected precision:

@68% CL	scenario I	scenario II	scenario III
ppXX	3.8	5.9	10.0
bbττ	9.8	12.2	13.8
bbbb	22.3	27.1	32.0
comb.	3.4	5.1	7.8

- Combined precision:
 - 3.5-8% for SM (3% stat. only)
 - 10-20% for $\lambda_3 = 1.5^* \lambda_3^{SM}$

BSM sensitivity

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.

- $\delta \kappa_{\lambda}^{\text{stat+syst}}$ ($\kappa_{\lambda} = 1.5$) $\approx 10\%$
- $\delta \kappa_{\lambda}^{\text{stat+syst}}$ ($\kappa_{\lambda} = 1.7$) $\approx 15 \%$
- $\delta \kappa_{\lambda}^{\text{stat+syst}}$ ($\kappa_{\lambda} = 2.0$) $\approx 20 \%$

CAVEAT: assumes all SM-like couplings except for trilinear

The nature of the EW phase transition

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

This requires O(I) deviations in the 3rd derivative of the Higgs potential w.r.t to value predicted in the SM

Probe the existence of other particles coupled to the Higgs

Higgs self-coupling at FCC-hh

- Very small cross-section due to negative interference with box diagram
- HL-LHC projections : $\delta k_{\lambda /} k_{\lambda} \approx 50\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40$ (and Lx10)
 - x400 in event yields and x20 in precision
- main channels studied:
 - bbyy (most sensitive discussed here)
 - bbZZ(4l) (in backup)
 - bbbbj (boosted) (in backup)
- Two very sensitive channels not considered yet:
 - $bb\tau\tau$ ($\delta k_{\lambda} / k_{\lambda} \approx 8\%$ from [1802.01607])

Vector Boson Scattering

- Sets constraints on **detector acceptance** (fwd jets at **η≈4**)
- Study W+/-W+/- (same-sign) channel
- Large WZ background at FCC-hh
- 3-4% precision on W_LW_L scattering xsec. achievable with full dataset (only 3σ HL-LHC)
- Indirect measurement of HWW coupling possible, $\delta \kappa_W / \kappa_W \approx 2\%$

W

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the $W_L W_L \rightarrow HH$ process.

$m_{l^+l^+}$ cut	> 50 GeV	$> 200~{ m GeV}$	> 500 GeV	> 1000 GeV
$\kappa_W \in$	[0.98,1.05]	[0.99,1.04]	[0.99,1.03]	[0.98,1.02]

large mww

W

F. Bishara, R. Contino, J. Rojo

$W_L W_L \rightarrow HH$

With c_V from FCC-ee, $\delta c_{2V} < 1\%$

Higgs Self-coupling and constraints on models with 1st order EWPT

- Strong 1st order electroweak phase transition (and CP violation) needed to explain large observed baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet

Summary of Higgs & SM

- The FCC-hh machine will produce > 10¹⁰ Higgs bosons
- Such large statistics open up a whole new range of possibilities, allowing for precision in new kinematic regimes, and rare decay channels → complementary to FCC-ee
- Measuring ratios of couplings (or equivalently BRs), allows to cancel systematics (1% precision on "rare" couplings within reach after absolute HZZ measurement in e+e-)
- Higgs-self coupling can be measured with $\delta \kappa_{\lambda}(stat) \approx 5\%$ precision at FCC-hh (best achievable precision among all future facilites)
- **VBS** longitudinal polarisations V_LV_L can be measured at **3-4%** precision(W_LW_L same sign), provides percent level precision HWW coupling measurement.
- Can directly and indirectly exclude compelling classes of models compatible with 1st order electroweak phase transition
- Extremely rich Higgs program at the FCC-hh, goes much beyond what has been presented here. Further studies are needed:
 - gauge boson pair production at large mass (to study anomalous couplings)
 - differential measurements: Higgs p_T in the multi-TeV, as a probe of BSM physics
 - VH production at large mass
 - missing HH decay channels (bb $\tau\tau$ (~8%), bbbb, etc ...) and combination

What can the FCC-hh say about BSM physics

Exploration potential:

- New machines are build to make discoveries!
- Mass reach enhanced by factor $\sqrt{s/14\text{TeV}}$ (5-7 at 100TeV)
- Statistics enhanced by several orders of magnitude for possible BSM seen at HL-LHC
- Benefit from both direct (large Q^2) and indirect precision probes

Could provide answers to questions such as:

- Is the SM dynamics all there at the TeV scale?
- Is there a TeV-Scale solution the hierarchy problem?
- Is Dark Matter a thermal WIMP?
- Was the cosmological EW phase transition 1st order? Cross-over?
- Could baryogenesis have taken place during EW phase transition?

Heavy resonances @ 100 TeV

Detector requirements from high pT searches

Detector requirements from high p_T searches

- Change in paradigm: heavy flavour tagging
- multi-TeV b-Hadrons decay outside the pixel volume
- Need to adapt identification algorithms for maintaining sensitivity in in high mass searches.

Only 71% 5 TeV b-hadrons decay < 5th layer.

• displaced vertices

B-tagging eff.

Disappearing Tracks

- Observed relic density of Dark Matter Higgsino-like: ITeV, Wino-like: 3TeV
- Mass degeneracy: wino 170MeV, Higgsino 350MeV
- Wino/Higgsino LSP meta-stable chargino, cτ= 6cm(wino)
 7mm(higgsino)

- Disappearing tracks analysis shows discovery reach beyond upper limits of MDM
- In a similar way FCC-hh can explore conclusively EW charged WIMP models, (low multiplets)

Heavy resonances @ 100 TeV

- M = I TeV Higgsino can be discovered
- M = 3 TeV Wino can be discovered

Higgs Self-coupling and constraints on models with 1st order EWPT

- Strong Ist order EWPT needed to explain large observed baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet

MSSM Higgs

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, J. Ha arXiv: 1605.08744 arXi

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, arXiv: 1504.07617