

Evolution de la source X Compton Inverse d'ELSA et simulation de son compresseur double alpha (CEA DAM, France)

Présentation flash doctorant

Abel PIRES (CEA DAM, LMCE)

V. LE FLANCHEC A-S. CHAUCHAUT J. AMICO M. COLLET (CEA DAM, LMCE) - N. DELERUE (IJCLab, CNRS)

Increasing the yield of an ICS X-ray Source

Increasing the yield of an ICS X-ray Source Inverse Compton X-ray Source

Inverse Compton X-ray Source : (laser + electron bunch \rightarrow X-ray)

Monochromatic and directional radiation sources with high temporal resolution

- Compton scattering cross section is very small
 - \rightarrow need lot of efforts to increase yield

- Compact X-ray source for diagnostic characterization (for Laser Mega Joule)
- versatile : single shot (primary use) recurrent

> 532 or 1064 nm laser ($E_p = 2,3$ or 1,1 eV) + relativistic electrons ($E_e = 18 - 30 MeV$)

 \rightarrow X-ray photons $E_X = 12 - 40 \text{ keV}$

$$\mathbf{E}_X(\mathbf{\theta}_2=\mathbf{0})=4\gamma^2 E_p$$

ELSA Accelerator (CEA DAM, France)

3D view

Typical bunch charge : 0.1 - 3 nCBunch duration : 15 - 100 ps1 - 10000 bunches per train (1 - 5 Hz)Emittance : 2 - 30 µm

Increasing the yield of an ICS X-ray Source

Pitfalls :

Solutions :

Abel Pires

Increasing the yield of an ICS X-ray Source

Solutions :

Twiss parameters and charge that maximize X-ray yield

Simulating electron beam in alpha magnet and frame change

Simulating electron beam in alpha magnet compressor Double alpha magnet compressor

Simulating electron beam in alpha magnet compressor Double alpha magnet compressor

- The ICS Source is located after a double-alpha magnet compressor
- Good compression with linearizer
- IMPORTANT EMITTANCE GROWTH WITHIN THE ALPHA MAGNETS
- Simulation to optimize beam transport
- Is it possible to reach desired flux with a double alpha magnets ?

10

After one

Simulating electron beam in alpha magnet compressor Using transfer matrix in TraceWin

•	Auto calculation	
Ø	D:/ELSA/TraceWin/jules/lineariseur_q_1_10M/lineariseur_q_1_10M.ini	N
Main	Matching Multipartide Output Edit Data Charts Errors VA	
	🙇 🚱 🍃 🗶 # 🥟 🕞 D:/ELSA/TraceWin/ELSA_v1_Compton.dat	
169	drift 13.46 33	
170	drift 146.54 33	
171	; Entree alpha 1	
171	ALPHA_MAGNET -40./11331	
1/2	VARIABLE Louad 103.2	
	VARIABLE f guad 1-2.1	
	VARIABLE f_quad_2 2.6 VARIABLE f_quad_3 -2.15	
173	quad Lquad f_quad_1 33	
174	DRIFT 112.2 33 0 0 0	
175	quad Lquad f_quad_2 33	
176	DRIFT 112.2 33 0 0 0	
177	quad Lquad f_quad_3 33	
178	DRIFT 137.5 33 0 0 0	
	; Entree alpha 2	
179	ALPHA_MAGNET -40.71 1 33 1	
180	drift 133 drift 224 33	

The final matrix of a fraction of a alpha magnet (on which, X_i and θ_i are kept almost constant) :

The matrix of the full element is a product of all matrixes for varying X_s and θ_s .

 Experiments show larger emittance growth than TraceWin simulations → use CST PS

Simulating electron beam in alpha magnet compressor Using fields maps in CST

Abel Pires

Cez

Simulating electron beam in alpha magnet compressor Mesh in CST vs TraceWin

3D mesh cells for PIC algorithm and space charge computation

Abel Pires

Simulating electron beam in alpha magnet compressor PIC in CST vs TraceWin

Frame change

Key steps from laboratory frame to reference frame

Frame change

Frame change is necessary to obtain proper phase space

- Good agreement between CST and TraceWin at low charge (0,1 nC) validate the methods
- Larger emittance growth at high charge with CST

Results for one alpha magnet, see poster for the whole compressor !

Other codes to consider

RF-Track (CERN)

- Electrostatic or electrodynamic
- Transfer Matrix or field maps
- Can simulate Compton interaction

- WARP-X (LANL) Electrostatic or electrodynamic
- Transfer Matrix or field maps
- Massively parallel

GPT (commercial)

- Electrostatic for PIC computation
- Particle-particle module available (PP)

OPAL (PSI)

- Electrostatic but computation within reference frame after energy bining (thus lower dispersion)
- Transfer Matrix or field maps
- Massively parallel

COMSOL (commercial)

Particle-particle module available (PP)

ASTRA (DESY)

- Electrostatic
- Transfer Matrix or field maps
- Famous

Conclusion - Prospect

Beam transport simulation :

- Electrostatic hypotheses seems inapropriate
- Full electrodynamic in laboratory frame is time consuming

Perspectives :

- Using RF-Track
- Compton source experiments on ELSA \rightarrow Compare/validate simulations

Other means to increase the yield :

- new 1,3 GHz chirp linearizer,
- new CPA system,
- new SMILE device,
- Laser at 532 instead

THANK YOU

Special thanks to :

Jules AMICO Anne-Sophie CHAUCHAT Martin COLLET Vincent JACOB Vincent LE FLANCHEC Jonathan RIFFAUD Rudolf ROSCH Jérome TOUGUET (CEA DAM, LMCE) Nicolas DELERUE (IJCLab, CNRS)

Abel Pires :

Vincent LE FLANCHEC :

abel.pires@cea.fr

vincent.le-flanchec@cea.fr