Conception du lattice et optimisation de I'optique faisceau de la machine PERLE

Journées Accélérateurs de la SFP
Octobre 2023

Presenté par
Rasha ABUKESHEK
Sur la direction de
Achille STOCCHI \& Hadil ABUALROB

Outline

\square Introduction to PERLE optics
\square B-com magnet
$>$ Specification and design
$>$ Field calculation and Harmonic content
> Cooling system calculation
\square Preliminary study of PERLE lattice errors
$>$ Field errors

- B-com magnet harmonics

I. Chicane magnets for injection and dump
II. LINAC

Two cryomodules each of four 5-cell SRF cavities.
III. Arcs

6 arcs for a three-turn configuration.
IV. Spreader/Recombiner

- Connect LINAC to arcs section.
- One common dipole magnet for the three arcs at each side called the B-com magnet.

B-com Magnet

Specification and design

- Common between the three arcs.
- Horizontal field magnet \rightarrow Vertical beam split at three different energies.
- 30° bending angle.

Tool: Opera 3D

B-com Magnet

Harmonic content

Energy	b1	b2	b3	b4	$b 5$	$\sqrt{\sum_{n=1}^{5} b_{n}^{2} / b_{1}}$
171 MeV	$-2.90 \mathrm{E}+01$	$-1.11 \mathrm{E}-02$	$3.06 \mathrm{E}-03$	$2.19 \mathrm{E}-04$	$-4.99 \mathrm{E}-04$	$3.594 \mathrm{E}-04$
336 MeV	$-2.81 \mathrm{E}+01$	$1.84 \mathrm{E}-03$	$1.14 \mathrm{E}-04$	$1.05 \mathrm{E}-04$	$-4.69 \mathrm{E}-04$	$6.79 \mathrm{E}-05$
500 MeV	$-2.79 \mathrm{E}+01$	$2.77 \mathrm{E}-03$	$3.85 \mathrm{E}-04$	$-1.77 \mathrm{E}-06$	$-2.49 \mathrm{E}-04$	$1.01 \mathrm{E}-04$

- 0.036\% field homogeneity along the beam path.
- Quadrupole and sextupole components can be dealt with in the lattice.
- Initial design: 0.1\% field quality

Improvement by one order of magnitude.

B-com Magnet

Coil and cooling circuit

$$
\begin{aligned}
& \text { Excitation current calculated for } \mathrm{B}=\mathbf{0 . 8 7} \mathrm{T} \\
& \text { is } \\
& \mathrm{NI}=11520.263 \text { A.turn }
\end{aligned}
$$

- The cooling circuit parameters were calculated for different current values.
- Goal: achieve the minimum possible current to power the magnet while ensuring adequate cooling of the coil.
- Turbulent water flow must be achieved \rightarrow Reynolds number > 4000
$I=166.67 A$ is the minimum value possible.

Introducing Errors

The lattice is tuned so that

- The Dispersion function is Zero at the exit of each arc.
- The Beta function is the same at the entrance and exit of each arc.
- The Alfa function changes the sign between the arc entrance and exit.

Introducing Errors

Field errors

- Relative field errors were introduced to the first B-com in the spreader and the B-com- R in the merger section.
- The values of the first four higher relative harmonics (b_{n} / b_{1}) were considered. \{see slide 5\}

Twiss	Perfect element	With field errors
$D_{x}[\mathrm{~m}]$	0.00	0.00
$D_{y}[\mathrm{~m}]$	0.00	-0.00301
$D P_{x}$	0.00	0.00
$D P_{y}$	0.00	0.00059
$\beta_{x}[\mathrm{~m}]$	8.63544	8.70493
$\beta_{y}[\mathrm{~m}]$	8.63478	9.73175

An increase in the Beta function is noticed at the exit.

Twiss functions at the exit of Arc1

Conclusion

- The B-com magnet is designed to generate vertical field of 0.7 T and field integral of 0.88 T along the magnet length with harmonic content in the order of 10^{-4} meeting the accepted tolerances of the beam dynamics.
- Cooling circuit parameters are calculated for the B-com coil used in the design.
- Different configurations (conductor area, number of turns, different arrangements) have been investigated to decrease the current from the power supply.
- The B-com field harmonics were introduced to the lattice, further investigation on its effect is undergoing.

