

Université de Paris

Journées Accélérateurs de la SFP

Octobre 2023

Presenté par

Rasha ABUKESHEK

Sur la direction de

Achille STOCCHI & Hadil ABUALROB

Introduction to PERLE optics

B-com magnet

Specification and design

Field calculation and Harmonic content

Cooling system calculation

Preliminary study of PERLE lattice errors

Field errors

B-com magnet harmonics

PERLE Optics

- I. Chicane magnets for injection and dump
- II. LINAC

Two cryomodules each of four 5-cell SRF cavities.

III. Arcs

6 arcs for a three-turn configuration.

- IV. Spreader/Recombiner
 - Connect LINAC to arcs section.
 - One common dipole magnet for the three arcs at each

Voir la présentation de Julien Michaud demain à 15:20

B-com Magnet

- Common between the three arcs.
- Horizontal field magnet → Vertical beam split at three different energies.
- 30° bending angle.

B-com Magnet

Harmonic content

Energy	b1	b2	b3	b4	b5	$\sqrt{\sum_{n=1}^5 b_n^2}/b_1$
171MeV	-2.90E+01	-1.11E-02	3.06E-03	2.19E-04	-4.99E-04	3.594E-04
336MeV	-2.81E+01	1.84E-03	1.14E-04	1.05E-04	-4.69E-04	6.79E-05
500MeV	-2.79E+01	2.77E-03	3.85E-04	-1.77E-06	-2.49E-04	1.01E-04

- 0.036% field homogeneity along the beam path.
- Quadrupole and sextupole

components can be dealt with in the lattice.

Initial design: 0.1% field quality

Improvement by one order of magnitude.

220

200

180

100

80

Coil and cooling circuit

- The cooling circuit parameters were calculated for different current values.
- Goal: achieve the minimum possible current to power the magnet while ensuring adequate cooling of the coil.
- Turbulent water flow must be achieved \rightarrow Reynolds number > 4000

I = 166.67 A is the minimum value possible.

Excitation current calculated for **B** = **0.87 T** is NI = 11520.263 A.turn

Introducing Errors

The lattice is tuned so that

- The Dispersion function is Zero at the exit of each arc.
- The Beta function is the same at the entrance and exit of each arc.
- The Alfa function changes the sign between the arc entrance and exit.

Field errors

- Relative field errors were introduced to the first B-com in the spreader and the B-com-R in the merger section.
- The values of the first four higher relative harmonics (b_n/b₁) were considered. {see slide 5}

Twiss	Perfect element	With field errors
<i>D_x</i> [m]	0.00	0.00
<i>D_y</i> [m]	0.00	-0.00301
DP_{χ}	0.00	0.00
DPy	0.00	0.00059
eta_x [m]	8.63544	8.70493
β_y [m]	8.63478	9.73175

Twiss functions at the exit of Arc1

An increase in the Beta function is noticed at the exit.

Conclusion

- The B-com magnet is designed to generate vertical field of 0.7 T and field integral of 0.88 T along the magnet length with harmonic content in the order of 10⁻⁴ meeting the accepted tolerances of the beam dynamics.
- Cooling circuit parameters are calculated for the B-com coil used in the design.
- Different configurations (conductor area, number of turns, different arrangements) have been investigated to decrease the current from the power supply.
- The B-com field harmonics were introduced to the lattice, further investigation on its effect is undergoing.

Merci beaucoup!