

Last developments and compensation strategies of cavity failures in superconducting linacs

Adrien Plaçais^{*} F. Bouly^{*} B. Yee-Rendon[†] Journées Accélérateurs SFP, October 6th, 2023

*Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France

[†] JAEA/J-PARC, Tokai, Japan

Context of the study

Development of LightWin

Usage of LightWin on ADS linacs

Conclusions

Context of the study

Fundamental to avoid beam losses in modern hadron accelerators

- Hadron accelerators go towards increasing mean beam power.
- High power \Rightarrow impact of beam losses on accelerator structure.
- Very stringent availability requirements.

Figure 1: Panorama of the hadron accelerators (existing, projects). Courtesy of F. Bouly.

ADS have particularly stringent availability requirements

- Accelerator-Driven Systems (ADS): sub-critical nuclear reactor driven by proton accelerator.
- · Avoiding prolonged beam trips is even more important:
 - · thermal constraints on the reactor structure;

long restart procedures.

⇒ MYRRHA-ADS: max 10 beam interruptions longer than 3 s per 3 month operating cycle.

Figure 2: Daily max number of fault per fault duration for several proton accelerators. Data from Yee-Rendon 2022.

Yee-Rendon (2022), "Overview of ADS Projects in the World" Biarrotte et al. (2008), "Dynamic compensation of an rf cavity failure in a superconducting linac" Bouly et al. (2014), "Fault tolerance and consequences in the MYRRHA superconducting LINAC"

Cavity failure compensation to limit beam interruptions

• Retune cavities to compensate for a failed one.

Figure 3: Compensation in the MYRRHA-ADS. Particle densities of the retuned linac, w.r.t. nominal linac. Courtesy of F. Bouly.

- In ADS, facilitated by specific design:
 - linac is very acceptant, cavities are derated (MYRRHA: $E_{\rm acc}$ + 30 %).
- Create a **database** to link a failure to the associated <u>compensation settings.</u>

Bouly (2020), "MYRRHA Superconducting linac and Fault Tolerance Concept"

Development of LightWin

Motivations for an automatic compensation tool

- Classic workflow to find compensation settings (*e.g.* with TraceWin).
 - 1. (\approx min) Manually set up compensation process.
 - 2. (\approx s to h) Run optimisation process.
 - $\rightarrow~$ Incompatible with ADS requirements.
- Envisioned workflow: generate a database with dedicated tool LightWin.
 - 1. (< ms) Take settings from database.
 - 2. That's all.
- NB: applying the new settings in a short amount of time is also an important problematics.

Bouly (2011), "Etude d'un module accélérateur supraconducteur et de ses systèmes de régulation pour le projet MYRRHA"

Figure 4: Structure of the LightWin code.

Usage of LightWin on ADS linacs

- Beam dynamics:
 - Relatively high energies (pprox 10 MeV ightarrow 1 GeV), protons.
 - Can study only longitudinal dynamics, envelope.
 - \rightarrow Faster Envelope1D beam dynamics tool.
- Compensation strategy:
 - Local compensation (cavities in green remain untouched).
 - For each failed cavity, compensate with 1 lattice before, 1 after.

Figure 5: Illustration of the compensation strategy. Red: failed. Orange: compensating. Green: nominal.

Optimisation problem

Figure 6: Parametrization of the optimisation problem. Red: failed ($k_e = 0$). Orange: compensating. Green: nominal.

- Difference of kinetic energy: $\Delta \textit{W}_{\rm kin} = |\textit{W}_{\rm kin}^{\rm nominal} \textit{W}_{\rm kin}^{\rm fix}|$
- Difference of absolute phases: $\Delta \phi_{
 m abs} = |\phi_{
 m abs}^{
 m nominal} \phi_{
 m abs}^{
 m fix}|$
- Mismatch factor: $M = \sqrt{\frac{1}{2} \left(R + \sqrt{R^2 4} \right) 1}$
- $R = \beta \gamma' + \beta' \gamma 2\alpha \alpha'$

MYRRHA-ADS study presented @ LINAC2022

• 10 faults distributed along MYRRHA-ADS linac.

Figure 7: Structure of the MYRRHA-ADS with the faults that we studied. Beam current 4 mA.

Plaçais et al. (2022), "Cavity Failure Compensation Strategies in Superconducting Linacs"

Cavity parameters on a multi-fault scenario on MYRRHA

Figure 8: Accelerating voltage and synchronous phase of MYRRHA-ADS, in nominal and fixed cases.

Acceptance is reduced in this case

Figure 9: Acceptance of the MYRRHA-ADS calculated with TraceWin.

- Retrieve nominal energy at the end of the linac.
- No beam losses.
- But reduction of acceptance.
 - \rightarrow Possible to find better settings?

JAEA-ADS systematic study presented @ IPAC2023

Figure 10: Schematics of the JAEA-ADS.

- Simpler scenarios:
 - a single error at the time;
 - · single cavity & cryomodule failures;
 - systematic study of all errors in this section (database);
- Comparison w/ settings found during previous TraceWin study Yee-Rendon 2022.
- k-out-of-n: a failure is compensated with 5 neighboring cavities.

Plaçais et al. (2023), "Development of a Tool for Cavity Failure Compensation in Superconducting Linacs: Progress and Comparative Study" Yee-Rendon et al. (2022), "Beam dynamics studies for fast beam trip recovery of the Japan Atomic Energy Agency accelerator-driven subcritical system"

Study of last section:

- 940 MeV to 1500 MeV;
- 5-cell elliptical cavities;
- 648 MHz;
- five cavities per cryomodule.

Beam parameters @ linac exit similar LightWin/BYR study

Table 1: Longitudinal beam optics performance for this study (transverse optics inappendix). TraceWin results are taken from Yee-Rendon 2022. Outlined results =TraceWin optics are better.

	$\Delta arepsilon / arepsilon$	e ₀ [%]	М			
Faulty cavity	LightWin	TraceWin	LightWin	TraceWin		
257	-1.11	1.52	0.10	0.09		
258	-0.27	1.02	0.02	0.09		
289	-0.10	0.13	0.00	0.04		
290	0.10	0.25	0.01	0.08		
291	-0.03	0.13	0.03	0.09		
292	0.10	0.25	0.02	0.09		
293	0.17	0.25	0.02	0.09		
289-293	-0.29	-1.27	0.35	0.06		

Yee-Rendon et al. (2022), "Beam dynamics studies for fast beam trip recovery of the Japan Atomic Energy Agency accelerator-driven 13/ subcritical system"

Conclusions

Future developments for LightWin

- Developed LightWin.
 - Automatic tool for compensation of cavity failures.
 - Usage validated on ADS.
- And now?
 - · Systematic study on MINERVA (first section of MYRRHA).
 - Started working with SPIRAL2 linac.
 - Global compensation.
 - New beam dynamics tools (B. Yee-Rendon, J.-M. Lagniel).
 - Publish code open-source.

Figure 11: Evolution of ϕ_{abs} density in SPIRAL2 linac. Cavity #6 failure, compensated. 900 μ A ⁴He²⁺ 63.87 MeV 2 kW. Courtesy G. Normand.

Orduz (2023), "Première année d'exploitation de SPIRAL2"

References

- Bruce Yee-Rendon. "Overview of ADS Projects in the World". In: Proceedings of LINAC2022. Liverpool, United Kingdom: JACoW Publishing, Geneva, Switzerland, 2022 (cit. on p. 5).
- [2] Jean-Luc Biarrotte and Didier Uriot. "Dynamic compensation of an rf cavity failure in a superconducting linac". In: Physical Review Special Topics - Accelerators and Beams 11.7 (July 2008), p. 072803 (cit. on p. 5).
- [3] Frédéric Bouly, Jean-Luc Biarrotte, and Didier Uriot. "Fault tolerance and consequences in the MYRRHA superconducting LINAC". In: Proc. 27th Linear Accelerator Conf. (LINAC14). Geneva, Switzerland: JACoW Publishing, Geneva, Switzerland, 2014 (cit. on p. 5).
- [4] Frédéric Bouly. "MYRRHA Superconducting linac and Fault Tolerance Concept". In: Proc. 30th Linear Accelerator Conf. (LINAC20). Virtual Conference: JACOW Publishing, Geneva, Switzerland, 2020 (cit. on p. 6).
- [5] Frédéric Bouly. **"Etude d'un module accélérateur** supraconducteur et de ses systèmes de régulation pour le

projet MYRRHA". PhD thesis. Paris, France: Université Paris-Sud XI, Nov. 2011 (cit. on p. 8).

- [6] Adrien Plaçais and Frédéric Bouly. "Cavity Failure Compensation Strategies in Superconducting Linacs". In: Proceedings of LINAC2022. Ed. by Peter McIntosh et al. Liverpool, United Kingdom: JACoW Publishing, Geneva, Switzerland, 2022, pp. 552–555 (cit. on pp. 13, 27).
- [7] Adrien Plaçais, Frédéric Bouly, and Bruce Yee-Rendon.
 "Development of a Tool for Cavity Failure Compensation in Superconducting Linacs: Progress and Comparative Study". In: Proc. 14th Int. Particle Acc. Conf. (IPAC'23). Venice, Italy: JACoW
 Publishing, Geneva, Switzerland, 2023 (cit. on p. 16).
- [8] Bruce Yee-Rendon et al. "Beam dynamics studies for fast beam trip recovery of the Japan Atomic Energy Agency accelerator-driven subcritical system". In: Physical Review Accelerators and Beams 25.8 (Aug. 2022), p. 080101 (cit. on pp. 16, 17).

[9] Angie Orduz. "Première année d'exploitation de SPIRAL2". In: Journées Accélérateurs 2023 de la SFP. Roscoff, France, 2023 (cit. on p. 19).

Table 2: Linac specifications of some multi-MW proton accelerators.

Linac	Energy [MeV]	Current [mA]	Power [MW]
ESS	3.6 ightarrow 2000	62.5	5 (4%)
CiADS	2.5 ightarrow 500	5	2.5 (CW)
JAEA-ADS	2.5 ightarrow 1500	20	30 (CW)
MYRRHA-ADS	16.6 ightarrow 600	4	2.4 (CW)

Optimisation algorithm tries to find the global minimum

Figure 12: Objective value against two variables in a simplified problem: only one compensating cavity to allow visualisation. The amplitude k_e required to reach optimum is unrealistically high.

Table 1: Beam optics performance for this study. "LW" stands for LightWin and "TW" for TraceWin. TraceWin results are taken from Ref. [6]. We outlined in red the beam optics that were better with TraceWin than with LightWin.

		$\Delta \varepsilon / \varepsilon_0$ [%]			М				
	Trans	Transverse		Longitudinal		Transverse		Longitudinal	
Faulty cavity	LW	TW	LW	TW	LW	TW	LW	TW	
257	0.42	1.07	-1.11	1.52	0.03	0.02	0.10	0.09	
258	0.11	0.88	-0.27	1.02	0.01	0.01	0.02	0.09	
289	-0.01	0.09	-0.10	0.13	0.00	0.01	0.00	0.04	
290	-0.06	-0.17	0.10	0.25	0.00	0.03	0.01	0.08	
291	0.12	0.04	-0.03	0.13	0.01	0.03	0.03	0.09	
292	-0.09	0.04	0.10	0.25	0.01	0.03	0.02	0.09	
293	-0.02	0.21	0.17	0.25	0.01	0.03	0.02	0.09	
289-293	0.18	1.78	-0.29	-1.27	0.13	0.02	0.35	0.06	

Figure 13: Table taken from Placais 2022.

Plaçais et al. (2022), "Cavity Failure Compensation Strategies in Superconducting Linacs"