Modèles Numériques de substitution pour une source d'électrons laser plasma

Kane Gueladio Journées Accélérateurs – SFP, Roscoff, 04/10/2023

P Drobniak (IJCLab), E Baynard (IJCLab), C. Bruni (IJCLab), K Cassou (IJCLab), C Guyot (IJCLab), G. Kane (IJCLab), S Kazamias (IJCLab), V. Kubytsky (IJCLab), B Lucas (IJCLab), M. Pittman (IJCLab), F. Massimo (LPGP), A. Beck (LLR), A. Specka (LLR), P Nghiem (IRFU), D. Minenna (IRFU)

- Injecteur laser-plasma (ILP) à 10 Hz [1]
- Performance comparable à un accélérateur RF
- Mise en place de boucles de rétroactions
- Processus non-linéaires requièrent l'utilisation de méthodes
 Numériques
- Injection par ionisation localisé [2,3]

Distance along longitudinal axis "x" $[\mu m]$

Parameters	phase 1	phase 2	phase 3	unit
energy	150	200	200	MeV
charge	15-30	30	>30	рС
frep	10	10	10	Hz
energy spread	<5%	< 3%	< 2%	rms
$arepsilon_{n,rms}$	1	<1	<1	μm
stability	5%	3%	<1%	-
reproductibility	5%	3%	<3%	-

[1]: https://pallas.ijclab.in2p3.fr [2]: M. Chen, et al. Physics of Plasmas 19, 033101 (2012). [3]: 1.M. Kirchen et al. PRL, 126, 174801 (2021)

Apprentissage Machine et simulations pour les ALP

- Code 'Particle-In-Cell' (PIC) :
 - Initialisation (Particules, charges, courants, etc...)
 - Interpolation des champs électromagnétiques
 - Calcul des positions et vitesses
- Procédé long et couteux (~150-10⁶ heure.cpu)

A Döpp et al, arXiv:2212.00026v1 [cs.LG] 30 Nov 2022

- https://fbpic.github.io/overview/pic_algorithm.html
- Création de modèles de substitutions moins couteux :
 - Exploration de l'espace des paramètres à partir de données de simulations et ou expérimentales
 - > Recherche du point de fonctionnement optimal
- Meilleure compréhension des relations entre les paramètres
- => Tester différents algorithmes d'apprentissage profond; première approche avec : **Neuronal Network, Gaussian Process, Decision trees** etc...

Méthodologie, génération de données

- Code PIC **SMILEI** [1] Configuration basse fidélité :
 - approximation symétrie cylindrique et d'enveloppe pour le champ laser
 - faible densité de macro-particules / cellule => gain 50 sur le temps CPU
- 15000 simulations de la source d'électron de type **Random scans** [2] : $(a_{0,}X_{of}, C_{N2}, P_1)$

• Génération de Modèles de substitutions pour les paramètres du faisceau d'électrons par entrainement sur les simulations.

$$E_{med}, E_{mad}, \varepsilon_y, Q = F(a_0, X_{of}, C_{N2}, P_1)$$

 E_{med} : Energie médiane, E_{mad} : déviation absolue à la médiane, ε_y : emittance suivant y, Q : charge

• Convergence des modèles autour de 10 000 simulations $r^2 pprox 0,9$

[1]: https://smileipic.github.io/Smilei/index.html [2]: P. Drobniak et al. PRAB 26, 091302 (2023)

Modèles de substitutions

- On entraine (*85% dataset K-fold*) et on génère une fonction continue avec les modèles de substitutions
 - > Réseau de neurones (32,32) 2 couches [1]
 - > Arbre de décisions (XGBoost) [2]
 - > Gaussian Process (Gpy) [3]
- Bonnes corrélations pour tous les modèles r²>0,9
- Permet de dégager des tendances dans l'hypervolume des paramètres

NN E_{med} Q_{end} ε_y [%] [Mev] NN ε[μm] Q[PC]300 150 XGB q_end XGB emit y XGB E_med [%] a [Mev] Q[PC] C_N2 300 150 XGB GPy q end GPy emit_y GPy E_med 14 12 C_N2 [%] a[Mev] Q[PC] [m1]3 - 300 8 N2 GPy 100 60 80 p_1[mbar] 100 20 80 120 0 80 p_1[mbar] 100 20 60 120 40 60 20 40 60 40 p_1[mbar]

Paramètres faisceaux

[1] Tensorflow/keras: https://www.tensorflow.org/ [2] : Extreme gradient boosting : https://github.com/dmlc/xgboost [3]: A gaussian process framework in python https://github.com/SheffieldML/GPy

Modèles de substitutions

1

Recherche du point de fonctionnement optimal

- Fonction objective **f** permettant de trouver un faisceau correspondant à nos attentes
- Minimisation/Maximisation de cette fonction pour trouver un point de fonctionnement

 \longrightarrow Optimum : $a_0 = 1,44$; $X_{of} = 3mm$; $C_{N2} = 7,7\%$; $P_1 = 50 mbar$

Test de la robustesse des Modèles

• Lancement de 600 simulations autour de l'optimum de la fonction objective *f*.

O données d'entrainements dans hypervolume des inputs

 Lancement de 600 simulations autour d'un point donnant des performances proches de l'optimum mais décalées en X_{of}.

4 données d'entrainements dans l'hypervolume des inputs

Conclusion

- Résultats prometteurs, toutes les méthodes ont de bonnes performances dans les zones d'entrainement.
- Les **Modèles de substitutions de la source d'électron ALP** nous permettent d'avoir une vue globale des paramètres faisceaux en fonction des inputs de réglage de la source (*paramètres laser, plasma*).
- Les réseaux de neurones (NN) généralisent mieux dans les zones avec peu de données d'entrainements.
- Un modèle numérique de substitutions de la source d'électron ALP peut être utilisé pour générer des paramètres dans l'optimisation globale (start-to-end) de l'injecteur ALP (source + transport) pour un accélérateur laser-plasma multi-étages.
- Une approche similaire sera utilisée lors des études expérimentales pour l'optimisation du réglage de la source ALP.

Merci pour votre attention

