# Rechauffement et acidification des océans

James Orr

Laboratoire des Sciences du Climat et de l'Environnement (LSCE) Institut Pierre-Simon Laplace CEA-CNRS-UVSQ, UP Saclay







# The ocean is influenced by many factors



Gattuso et al. 2015

# The atmospheric CO<sub>2</sub> increase is well documented



### More atmospheric CO<sub>2</sub> means increased ocean acidity



Schematic: Sam Dupont, University of Gothenburg

#### Some numbers:

4 kg CO<sub>2</sub> per day **per person** added to the ocean

+30% acidity in surface ocean since start of industrial era

+100 to 200% by 2100

Ocean acidification is largely from atmospheric  $CO_2$  increase but other factors may also affect coastal regions



Kelly et al (2011, Science)

### Change in pH from ocean acidification is already measurable



#### <u>Data</u>:

*Bates (2007) Dore et al. (2009) Santana-Casiano et al. (2007) Gonzàles-Dàvila et al. (2010)* 



IPCC AR5 WG1 Report (2013)

# Today's atmospheric $CO_2$ level appears as instantaneous spike relative to glacial-interglacial variations



Luthi et al. (2008, Nature)

## Today's rate of ocean acidfication is unprecedented



#### **Current change:**

Barker and Ridgwell (2012)

- overwhelms natural variations (last 800 000 years)
- 10x faster than natural event (55 million years ago)
- unprecedented (over last 300 million of years)
- 26% increase in acidity (H+) during industrial era
- 100% increase (or more) projected by 2100

Atmospheric CO<sub>2</sub> scenarios used in projections describe very different possible futures



## Future emissions cause future additional warming



IPCC AR6 WG1 report

# Surface air temperature warms less over the ocean

Simulated changes...





IPCC AR6 WG1 report

### The sea surface warms everywhere



Animation Copyright: James C. Orr

*Projections (IPCC AR5 WG1, 2013)* <u>scenario RCP8.5</u>

## Surface ocean acidity increases everywhere



Animation Copyright: James C. Orr

Projections (IPCC, AR5 WG1, 2013) <u>scenario RCP8.5</u>

> see also Bopp et al. (2013, Biogeosciences) Kwiatkowski et al. (2013, Biogeosciences)

#### Large regional differences, but the intensity depends on us



# Differences between models is less than between scenarios, especially for pH





#### IPCC AR5 WG1 Report (2013)

There is an increase not only in annual average acidity, but also the seasonal amplitude, doubling by 2100

21<sup>st</sup> century increase in seasonal amplitude (summer–winter difference)



Kwiatkowski & Orr (2018, Nat. Clim. Change)

The formation and dissolution of  $CaCO_3$  depend on the *saturation state* 

$$\Omega = [Ca^{2+}][CO_3^{2-}]/K_{sp}^*$$

$$K_{sp}^{*} = [Ca^{2+}]_{sat}[CO_{3}^{2-}]_{sat}$$

$$CO_2 + CO_3^2 + H_2O \rightarrow 2 HCO_3^2$$

#### The *corrosivity* of surface seawater increases this century

Seawater corrosivity to aragonite, a CaCO<sub>3</sub> mineral that certain organisms secrete to build their skeletal material (corals, shell builders)



### These corrosive conditions dissolve shells of sea butterflies



Movie: Brad Seibel, University of Rhode Island

Orr et al. (2005)

Fabry et al. (2008)

Comeau et al. (2009; 2011; 2012)

Lischka et al. (2011); Lischka & Riebesell (2012)

Bednarsek et al. (2012)

Sea butterfly shells  $(CaCO_3)$  exposed to corrosive conditions expected by 2100



Image: Victoria Fabry, California State University San Marcos

Most tropical corals projected to be exposed to unsustainable chemical conditions by mid-century (e.g.,  $\Omega_{arag} < 3.0$ )



Analysis of 13 Earth System Models (CMIP5)



Marine heatwaves have already resulted in large-scale coral bleaching events causing worldwide reef degradation Vulnerable Ecosystems identified in AR5, SR1.5, SROCC



IPCC SROCC report

# By 2100 there are large changes in subsurface corrosivity to $CaCO_3$

- Surface undersaturation
  - Southern Ocean
  - Subarctic Pacific
- Shoaling of aragonite saturation horizon
  - S. Ocean by 1000 m
  - N. Atlantic by 3000 m



Orr et al. 2005 (Nature)

# Most cold-water corals will be exposed to corrosive conditions during this century



*L. pertusa* with expanded tentacles ready to capture zooplankton

*Guinotte et al. (2006) Davies et al. (2008) Fautin et al. (2009) Tittensor et al. (2010)* 

70

50

### Regions that are naturally rich in CO<sub>2</sub> confirm expected trends

- less biodiversity
- fewer shells & corals
- more fragile shells
- invasive species

seafloor at Ischia, Bay of Naples, a natural lab to study acidification

CO<sub>2</sub> bubbles rise from

Hall-Spencer et al. (2008) Rodolfo-Metalpa et al. (2008)

more seaweed, coral degradation

Photo: Steve Ringman, Seattle Times





*Photo: Jason Hall-Spencer, Plymouth University* 

Another natural CO<sub>2</sub> vent site in Papua, New Guinea, used to study effects of acidification on corals

## Acidification likely to change marine ecosystems

Organisms react differently

Corals and shell builders decline

Seagrasses may increase

Fish become disoriented

Predators affected by prey loss

Potential fish catch decline

#### Synthesis of existing experimental studies



Wittmann & Pörtner (2013, Nature Clim. Change)

## Ocean acidification will also affect humans

- Fish is primary source of animal protein for 1 billion people, mostly in developing countries (FAO)
- Coral reefs provide
  - home for millions of species
  - storm protection for coastlines
  - income from tourism
  - biodiversity legacy for future
- Ocean acidification already affecting oyster industry (U.S. west coast)
- Ocean acidification may well affect aquaculture, fisheries, and human livelihoods



Photo: Rodolfo Quevenco, IAEA



*Photo: Jean-Louis Teyssié, IAEA* 



IPCC SROCC report

# Summary

## Ocean Acidification

Already detectable

Fast

Caused by CO<sub>2</sub> emissions

Negative impacts on ecosystems



Bopp et al. 2013

IGBP, IOC, SCOR (2013) Ocean Acidification Summary for Policy makers

# Future projections of egg survival for polar and Atlantic cod across the Arctic

#### James Orr (LSCE) Fanny Dubanton (LSCE, Ecole Polytechnique)

Photo: Peter Leopold (NPL)







### Global warming leads to poleward migration of fish biomass

#### Change in marine biomass of fish & invetebrates (1986-2005 to 2081-2100)

Store in the store is a store in the store is a stor

Percent change Average by 2081–2100, relative to 1986–2005

IPCC SROCC report

# Arctic Ocean is mostly shallow continental shelves and includes many regional seas





Can **Polar cod** survive climate change?

Will climate change allow Atlantic cod to invade the Arctic?

### Polar cod (Boreogadus saida) is omnipresent in the Arctic Ocean



Polar cod is sympagic. It relies on sea ice for spawning, habitat, food, etc





# Polar cod (*Boreogadus saida*) is a central element of the Arctic Ocean ecosystem



# Polar cod (Boreogadus saida) is a central element of the Arctic Ocean ecosystem



#### Fish have limited thermal tolerance, especially eggs & spawners





#### Pörtner and Farrell (2008)

# Warming & acidification affect embryos (eggs) more than adults



# Egg survival was measured experimentally as a function of temperature and $pCO_2$



Dahlke et al. (2018, Sci. Adv.)

# Current spawning areas have exhibit high habitat suitability (PES > 90%)



Dahlke et al. (2018, Sci. Adv.)

### Arctic surface sea-surface temperature increases less in winter than summer (opposite of air surface temperature)



#### 18 CMIP6 models: mean $\pm 1\sigma$

Ocean  $pCO_2$  has increased greatly, nearly uniformly, closely following the atmospheric CO<sub>2</sub> increase



#### 18 CMIP6 models: mean $\pm 1\sigma$

For Polar cod eggs, all suitable habitat disappears by 2100 except in the low-end, and perhaps mid-range, scenarios



# For Atlantic cod, traditional spawning grounds disappear, but might move to the Barents Sea in lower scenarios



# Fraction of area with suitable habitat (PES > 90%) remains if we consider only warming but disappears with added acidification



#### The thermal windows for the two cod species do not coincide



# Conclusion

All polar cod spawning habitat lost when atm CO2 > 700 ppm

Atlantic cod spawning forced to move & lost under high scenario

# Most of the heat from anthropogenic global warming is absorbed by the ocean



# Manipulative studies used to evaluate biological resp

• Lab perturbation experiments

• Field observations near CO<sub>2</sub> vents (natural, long term)

- Mesocosm experiments (in the water; on the sediments)
- Free Ocean CO<sub>2</sub> Enrichment (FOCE) experiments

## Conclusions

- General *Amplification* in seasonal cycles of surface  $pCO_2 \& [H^+]$ vs. *Attenuation* in seasonal cycles of surface pH and  $\Omega_A$
- In the Arctic, today's seasonal minima in pCO<sub>2</sub> & [H<sup>+</sup>] become tomorrow's seasonal maxima
- That phase change worsens summer acidity by ~30% compared to an amplification with no phase change
- How these big increases in summer SST, pCO<sub>2</sub>, and [H<sup>+</sup>] will affect the Arctic Ocean BGC & ecosystems has been ignored

# Future changes in animal biomass including fish and invertebrates

Percent change Average by 2081–2100, relative to 1986–2005



IPCC SROCC report



IPCC SROCC report

# Seasonal amplitude of surface ocean acidity & $pCO_2$ increases, particularly in polar oceans



9 CMIP5 models under RCP8.5

Kwiatkowski & Orr (2018, Nat. Clim Change)

#### Different scenarios result in large future differences in atm CO<sub>2</sub>



# Every tonne of CO<sub>2</sub> emissions adds to global warming



IPCC AR6 WG1 report