Modelling geophysical flows: how to go beyond honey?

B. Dubrulle

CEA Saclay/SPEC/SPHYNX CNRS UMR 3680

Climate model and degrees of freedom

Climate scales, climate model and degrees of freedom

Peut-on simuler la turbulence/ le climat ?

Plus l'ordinateur est gros, mieux on peu discrétiser Plus on peut prendre en compte De degrés de liberté

Combien y a t-il de degrés de liberté pertinents et combien ça coute de les simuler?

Peut-on simuler la turbulence/ le climat ?

Plus l'ordinateur est gros, mieux on peu discrétiser Plus on peut prendre en compte De degrés de liberté

USB3.0 SDCARD WIFI

2TB

Calcul:

6 10⁹ nœuds --> 1 semaine de CPU sur Blue Gene

> Stokage: 10⁸ nœuds- -> 2Tb= 1 disk

Les échelles du système

N=10¹²

 Re=10⁶

 10 ans de cpu
 L=10 cm

 10 000 disks
 η=0,01 mm

 Δt=1 ms

Eau

L=1000 km H=100 km η=10 mm Δt=1 s Horizontal: N=10¹⁶

Vertical: N=10⁷

Volume: N=10²³

10¹¹ ans de cpu 10¹⁵ disks

Air

What can be done? Truncate?

What happens when we truncate? 1D

Ray et al, 2011

Murugan et al, 2022

What happens when we truncate? 3D

Ray et al, 2011

Real axis

Murugan et al, 2022

Les échelles du système

Re=10⁶ L=10 cm η =0,01 mm Δ t=1/1000 s N=10¹²

L=1000 km H=100 km η =10 mm Δ t=1 s Horizontal: N=10¹⁶ Vertical: N=10⁷

Volume: N=10²³

10¹¹ ans de cpu 10¹⁵ disks 1 mn de cpu Moins d'un disk

10 ans de cpu

10 000 disks

Re=600 L=10 cm η=10 mm Δt=1/10 s N=10³

20/48

What can be done?

Two ways to cut the scale space

RANS: You keep the mean Parametrize fluctuations

Mathematical translation

$$\partial_t u_i + u_j \nabla_j u_i = -\nabla_i p + \frac{1}{\text{Re}} \Delta u_i + f_i$$

$$u = \overline{u} + u'$$
 – Spatial filter for LES
– Ensemble average for RANS

$$\partial_t \overline{u}_i + \overline{u}_j \nabla_j \overline{u}_i = -\nabla_i \overline{p} + \frac{1}{\text{Re}} \Delta \overline{u}_i + \overline{f}_i - \nabla_j \tau_{ij}$$

Reynolds stress

$$\tau_{ij} = \overline{u_i} \overline{u_j} - \overline{u_i} \overline{u_j} + \overline{u_i} u'_j + \overline{u'_i} \overline{u_j} + \overline{u'_i} u'_j \qquad \text{LES}$$
$$\tau_{ij} = +\overline{u'_i} u'_j \qquad \text{RANS}$$

Parametrization: RANS

Issue: Reynolds stress parametrization

$$\tau_{ij} = +\overline{u'_{i} u'_{j}}$$
$$= -\alpha_{ijk}\overline{u_{k}} - \beta_{ijkl}\nabla_{k}\overline{u_{l}}$$

AKA effect	Turbulent Viscosity	
Helicity effect	4 order tensor	
Influence on mean flow (breaks Galilean invariance)	Can be « negative » (instabilities)	
Produces large scale-instabilities		
(cf dynamo effect) Sulem, Frisch, She	Dubrulle&Frisch	RANS

Parametrization: RANS AKA effect

Use to explain:

Solar Granulation (Kishan, MNRAS, 1991)

Galaxy Clustering (Kishan, MNRAS, 1993)

Large-scale vortices in disks (Kitchatinov et al, A&A, 1994)

Liitle (not?) used in general turbulence

No general theory

Analogy with dynamo:

$$\alpha_{ijk} = \frac{1}{3} \frac{\vec{u} \cdot (\nabla \times \vec{u})}{\tau} \varepsilon_{ijk}$$

3D isotropic
RANS: AKA

Parametrization: RANS Viscosity

Not necessarily isotrop(cf shear flows) (Dubrulle&Frisch,

Isotropic Case
$$\beta_{ijkl} = v_T \delta_{jk} \delta_{il}$$

Dimensional analysis $v_T = K V L$
Constant Characteristic
Characteristic
Characteristic
velocity
Kolmogorov theory $V = (\varepsilon L)^{\frac{1}{3}}$

RANS: Viscosity

Example : Smagorinski

Viscosity written function of mean gradients

Climate model and degrees of freedom

How could we observe this new paradigm?

$$D_{\ell}(\mathbf{u}) = \frac{1}{4} \int_{\mathcal{V}} d^3 r \, (\boldsymbol{\nabla} G_{\ell})(\mathbf{r}) \cdot \delta \mathbf{u}(\mathbf{r}) \, |\delta \mathbf{u}(\mathbf{r})|^2,$$

Navier-Stokes Equations:

$$\partial_t u + u \bullet \nabla u = -\nabla p + v \Delta u + f$$

Problem

When we truncate the scale space we truncate energy transfer and impede the building of large fluctuations-> necessity to go to at least Kolmogorov scale to get them

From DNS to log-lattices

Campolina&Mailybaev, 2018

Scales of Motion

TYPICAL SIZE

Generalization to Convection

Ra

Generalization to Convection

Two-fluids model of turbulence

2D case: point vortices in the Ocean

Model of barocline vortices by Gas of point vortices

Gallet&Ferrari, PNAS 2020

2D case: point vortices in the Ocean

 $v_T = KVL$

Gallet&Ferrari, PNAS 2020

3D case: quasi-singularities

$$\partial_t u + u \bullet \nabla u = -\nabla p + v \Delta u + f$$

Dynamics of intense energy transfers

28

Dynamics of quasi singularities

Eulerian

Reconnexion?

Cheminet et al, PRL 2022

Lagrangian

Model of NS singularity: homogeneous solution of NS of degree -1

Recaling Symmetry for h=-1 $(t, x, u) \rightarrow (\gamma^2 t, \gamma x, \gamma^{-1}u)(\nu \neq 0)$

 $u(\gamma^2 t, \gamma x) = \gamma^{-1}u(t, x)$ homogeneous solutions of NS of degree -1

Stationary: only solution=Axisymmetric: (Sverak, xx) Landau –Squire solutions

Landau, (1944) Batchelor, 1951 H. Faller et al, (2021)

Model of singularity: homogeneous solution of NS of degree -1

Stationary solutions of NSE with a force at the origin

$$\nabla \cdot \mathbf{U} = 0,$$

$$(\mathbf{U} \cdot \nabla)\mathbf{U} + \frac{\nabla p}{\rho} - \nu \Delta \mathbf{U} = \nu^2 \delta(\mathbf{x})\mathbf{F},$$

General form

$$\phi(\mathbf{x}, \boldsymbol{\gamma}) = \|\mathbf{x}\| - \boldsymbol{\gamma} \cdot \mathbf{x}, \qquad \boldsymbol{\gamma} < 1$$

$$\mathbf{U} = -2\nabla(\ln \phi) + 2\mathbf{x}\Delta \ln(\phi),$$

and

$$\mathbf{F} = F(||\boldsymbol{\gamma}||) \frac{\boldsymbol{\gamma}}{||\boldsymbol{\gamma}||},$$

$$F(\boldsymbol{\gamma}) = 4\pi \left[\frac{4}{\gamma} - \frac{2}{\gamma^2} \ln \left(\frac{1+\gamma}{1-\gamma} \right) + \frac{16}{3} \frac{\gamma}{1-\gamma^2} \right].$$

H. Faller et al submitted (2021)

Model of singularity: homogeneous solution of NS of degree -1

Stationary solutions of NSE with a force at the origin

$$\nabla \cdot \mathbf{U} = 0,$$

$$(\mathbf{U} \cdot \nabla)\mathbf{U} + \frac{\nabla p}{\rho} - \nu \Delta \mathbf{U} = \nu^2 \delta(\mathbf{x})\mathbf{F},$$

General form

$$\phi(\mathbf{x}, \boldsymbol{\gamma}) = \|\mathbf{x}\| - \boldsymbol{\gamma} \cdot \mathbf{x}, \qquad \boldsymbol{\gamma} < 1$$

$$\mathbf{U} = -2\nabla(\ln \phi) + 2\mathbf{x}\Delta \ln(\phi)$$

and

$$\mathbf{F} = F(||\boldsymbol{\gamma}||)\frac{\boldsymbol{\gamma}}{||\boldsymbol{\gamma}||},$$
$$F(\boldsymbol{\gamma}) = 4\pi \left[\frac{4}{\gamma} - \frac{2}{\gamma^2} \ln\left(\frac{1+\gamma}{1-\gamma}\right) + \frac{16}{3}\frac{\gamma}{1-\gamma^2}\right].$$

3D: Interaction between a regular field and a pinçon

Consider the case where a pinçon , located at \mathbf{x}_{α} is embedded in a regular velocity field. What is going on?

The system is solution of NSE provided the two sets of equations are satisfied

For the field $\partial_t \overline{\mathbf{v}_R}^\ell + (\overline{\mathbf{v}_R}^\ell \cdot \nabla) \overline{\mathbf{v}_R}^\ell + \frac{\nabla \overline{p_r}^\ell}{\rho} - \nu \Delta \overline{\mathbf{v}_R}^\ell$ $= \tau^\ell - \frac{\nu^2}{\ell^3} \psi \left(\frac{\mathbf{x} - \mathbf{x}_\alpha}{\ell} \right) \mathbf{F},$ The two contributions are equal at the Kolmogorov scale where $\tau^\ell = \nabla \cdot \left(\overline{\mathbf{v}_R}^\ell \overline{\mathbf{v}_R}^\ell - \overline{\mathbf{v}_R} \overline{\mathbf{v}_R}^\ell \right)$ is the Reynolds stress.

For the pinçon

$$egin{array}{rcl} \dot{\mathbf{x}}_lpha &=& \mathbf{v}_\mathsf{R}(\mathbf{x}_lpha) \ \dot{\mathbf{y}} \overline{
abla_\gamma} \overline{\mathbf{U}}^\ell &=& -(\overline{\mathbf{U}}^\ell \cdot
abla) \mathbf{v}_\mathsf{R}. \end{array}$$

The pinçon moves with the fluid velocity and is sheared by the regular field

H. Faller et al submitted (2021)

Interaction between a dipole of pinçons

H. Faller et al entropy (2021)

Climate Bifurcations or Tipping points

Can we predict climate bifurcations????

L=1000 km Horizontal: N=10¹⁶ H=100 km Vertical: N=10⁷ η=10 mm Vertical: N=20 H=100 km Δ H=5 km Volume: N=10²³ ∆t=1000 s Viscosity x 10⁶ ! Peanut Butter Air

J2

Volume: N=2x10³

What could really be observed in IPCC simulations when increasing resolution? Problem of climate change might be even more worrysome!!!! (no more « adaptibility! »)