On QED corrections to $\bar{B} \rightarrow \bar{K}\ell^+\ell^-$ and R_K : Theory vs Experiment Flavour day at IJCLab 2023

Lepton Flavour Universality (LFU) predicted by SM.

One can thus define *lepton flavour universality* ratios, such as R_{K} :

$$R_{\mathcal{K}}\left[q_{\min}^2,q_{\max}^2
ight] = rac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 rac{d\Gamma\left(B
ightarrow K\mu^+\mu^-
ight)}{dq^2}}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 rac{d\Gamma\left(B
ightarrow K\mu^+\mu^-
ight)}{dq^2}},$$

where $q^2 = (\ell^+ + \ell^-)^2$.

Lepton Flavour Universality (LFU) predicted by SM.

One can thus define *lepton flavour universality* ratios, such as R_{κ} :

$$R_{K}\left[q_{\min}^{2}, q_{\max}^{2}\right] = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma\left(B \to K\mu^{+}\mu^{-}\right)}{dq^{2}}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma\left(B \to Ke^{+}e^{-}\right)}{dq^{2}}},$$

where $q^2 = (\ell^+ + \ell^-)^2$.

Naively expect $R_{\mathcal{K}} = 1 + \mathcal{O}(\frac{\alpha}{\pi})$. LHCb reports [2212.09152]

$$R_{K} \left[1.1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}
ight] = 0.949^{+0.042+0.022}_{-0.041-0.022}$$

Now in agreement with SM! (from previous 3.1σ deviation)

QED corrections are expected to be small, since $\frac{\alpha}{\pi} \approx 2 \cdot 10^{-3}$.

Due to kinematic effects however, QED corrections are enhanced to $\mathcal{O}(\frac{\alpha}{\pi}) \ln \hat{m}_{\ell} \gtrsim 2 - 3\%$ [Note: $\hat{m}_{\ell} \equiv \frac{m_{\ell}}{m_{B}}$].

Moreover, R_K is a theoretically *clean observable*.

QED corrections are expected to be small, since $\frac{\alpha}{\pi} \approx 2 \cdot 10^{-3}$.

Due to kinematic effects however, QED corrections are enhanced to $\mathcal{O}(\frac{\alpha}{\pi}) \ln \hat{m}_{\ell} \gtrsim 2 - 3\%$ [Note: $\hat{m}_{\ell} \equiv \frac{m_{\ell}}{m_{B}}$].

Moreover, R_K is a theoretically *clean observable*.

Therefore, need to make sure QED corrections properly accounted for in experiments (PHOTOS).

QED corrections are expected to be small, since $\frac{\alpha}{\pi} \approx 2 \cdot 10^{-3}$.

Due to kinematic effects however, QED corrections are enhanced to $\mathcal{O}(\frac{\alpha}{\pi}) \ln \hat{m}_{\ell} \gtrsim 2 - 3\%$ [Note: $\hat{m}_{\ell} \equiv \frac{m_{\ell}}{m_{B}}$].

Moreover, R_K is a theoretically *clean observable*.

Therefore, need to make sure QED corrections properly accounted for in experiments (PHOTOS).

Also, important for the precise determination of CKM matrix elements.

Theoretical Framework Differential Variables

where q - RF and $q_0 - RF$ denotes the rest frames of $q \equiv \ell_1 + \ell_2$ and $q_0 \equiv p_B - p_K = q + k$ respectively.

For the *real contribution* to the differential rate, we implement a *physical cut-off on the photon energy* (based on the visible kinematics),

$$ar{p}_B^2 \equiv m_{B\,{
m rec}}^2 = (p_B - k)^2 = (\ell_1 + \ell_2 + p_K)^2 \; ,$$

with

$$ar{p}_B^2 \geq m_B^2 \left(1-\delta_{ ext{ex}}
ight)$$
 .

For the *real contribution* to the differential rate, we implement a *physical cut-off on the photon energy* (based on the visible kinematics),

$$ar{p}_B^2 \equiv m_{B\,{
m rec}}^2 = (p_B - k)^2 = (\ell_1 + \ell_2 + p_K)^2 \; ,$$

with

$$ar{p}_B^2 \,\geq\, m_B^2 \left(1-\delta_{
m ex}
ight) \;.$$

For the virtual contribution, since there is no photon-emission, there is no difference between the $\{q^2, c_\ell\}$ - and $\{q_0^2, c_0\}$ -variables.

To isolate the IR divergences, we employ the two cut-off *phase space slicing method* [Harris, Owens '01].

We find that

- All soft divergences cancel between real and virtual, independent of the choice of differential variables.
- ► All hard-collinear divergences (ie. In m̂_l sensitive terms) cancel in the photon-inclusive case AND in the differential variables {q₀², c₀} (*IR-safe variables*).

To isolate the IR divergences, we employ the two cut-off *phase space slicing method* [Harris, Owens '01].

We find that

- All soft divergences cancel between real and virtual, independent of the choice of differential variables.
- ► All hard-collinear divergences (ie. In m̂_ℓ sensitive terms) cancel in the photon-inclusive case AND in the differential variables {q₀², c₀} (*IR-safe variables*).
- ► hc divergences survive in the differential variables {q², c_ℓ}, even in the photon-inclusive case.
- \blacktriangleright hc divergences never cancel as soon as one introduces a cut δ_{ex} on the photon energy.

Q: Do we miss any $\ln \hat{m}_{\ell}$ contributions due to structure dependence, by performing an EFT calculation?

A: No, gauge invariance ensures that there are no such additional contributions [Sec. 3.4 in 2009.00929].

Q: Do we miss any $\ln \hat{m}_{\ell}$ contributions due to structure dependence, by performing an EFT calculation?

A: No, gauge invariance ensures that there are no such additional contributions [Sec. 3.4 in 2009.00929].

- However, using the EFT analysis, we do not capture *all* of the $\ln \hat{m}_{\mathcal{K}}$ effects, which are a-priori not so small.
- Structure Dependent Contributions: LCSR approach [Ongoing].

See 2209.06925 [SN, R.Zwicky] for the implementation of a charged gauge-invariant interpolating operator.

- In photon-inclusive case (δ_{ex} = δ^{inc}_{ex}, dashed lines), all IR sensitive terms cancel in the q₀² variable locally.
- (Approximate) lepton universality on the plots on the left.

- In photon-inclusive case (δ_{ex} = δ^{inc}_{ex}, dashed lines), all IR sensitive terms cancel in the q₀² variable locally.
- (Approximate) lepton universality on the plots on the left.
- ▶ δ_{ex} effects are sizeable since hard-collinear logs do not cancel in that case. More pronounced for electrons.
- ▶ In charged case, we see finite effects of the O(2%) due to In \hat{m}_{K} effects which do not cancel.

Results Distortion of the $\bar{B} \to \bar{K} \ell^+ \ell^-$ spectrum

Effects are more prominent in the photon-inclusive case (δ_{ex} = δ^{inc}_{ex}) since there is more phase space for the q²- and q₀²-variables to differ.

▶ In fact, a fixed q^2 probes the full range of q_0^2 in that case!!

$\begin{array}{l} \mbox{Results} \\ \mbox{Distortion of the } \bar{B} \rightarrow \bar{K} \ell^+ \ell^- \mbox{ spectrum} \end{array}$

- Effects are more prominent in the photon-inclusive case (δ_{ex} = δ^{inc}_{ex}) since there is more phase space for the q²- and q₀²-variables to differ.
- ▶ In fact, a fixed q^2 probes the full range of q_0^2 in that case!!
- ► Could be problematic for probing R_K in q² ∈ [1.1,6] GeV² range, due to charmonium resonances!

l	$m_B^{ m rec}[{ m GeV}]$	$\delta_{ m ex}$	$(q_0^2)_{ m max}$
μ	5.175	0.0486	$q^2 + 1.36 \text{ GeV}^2$
е	4.88	0.146	$q^2 + 4.07 { m GeV}^2$

- $(q_0^2)_{\max} = q^2 + \delta_{\exp} m_B^2$ for zero angle between the photon and the radiating particle.
- Photon energy cut-off on the muon is tighter, so the migration of radiation effect is smaller.

l	$m_B^{ m rec}[{ m GeV}]$	$\delta_{ m ex}$	$(q_0^2)_{ m max}$
μ	5.175	0.0486	$q^2 + 1.36 { m GeV}^2$
е	4.88	0.146	$q^2 + 4.07 \text{ GeV}^2$

• $(q_0^2)_{\max} = q^2 + \delta_{\exp} m_B^2$ for zero angle between the photon and the radiating particle.

Photon energy cut-off on the muon is tighter, so the migration of radiation effect is smaller.

Thus for $q^2 = 6 \text{ GeV}^2$, in the electron case, the system probes the pole location of the first charmonium resonance, but not the second one:

$$m^2_{\Psi(2S)}pprox 13.6\,{
m GeV}^2>(q^2_0)_{
m max}>m^2_{J/\Psi}pprox 9.58\,{
m GeV}^2.$$

Based on 2205.08635 [D.Lancierini, G.Isidori, SN, R.Zwicky]

- MC normalised so that the total rate (combining 3-body and 4-body events) when fully photon inclusive, *integrated in a bin of q_0^2*, is equal to the LO rate (*different from previous plots!*).
- Excellent approximation (checked explicitly), since all log-sensitive terms cancel in that case.

Based on 2205.08635 [D.Lancierini, G.Isidori, SN, R.Zwicky]

- MC normalised so that the total rate (combining 3-body and 4-body events) when fully photon inclusive, *integrated in a bin of q*₀², is equal to the LO rate (*different from previous plots!*).
- Excellent approximation (checked explicitly), since all log-sensitive terms cancel in that case.
- Focus on neutral meson case. Full form factor used (*Ball-Zwicky parameterisation*), rather than an expansion.
- Photon energy cuts implemented via m^{rec}_B, 4.88 GeV for electrons, and 5.175 GeV for muons.

Comparison with PHOTOS Results: Distributions in q_0^2 (electron case)

- NLO includes the tree level contributions, unlike in previous plots.
- Excellent agreement with PHOTOS.

Comparison with PHOTOS

Results: Distributions in q^2 (electron case)

• No problem in the low q^2 region, relevant for R_K .

Comparison with PHOTOS

Results: Distributions in q^2 (electron case)

▶ No problem in the low q^2 region, relevant for R_K .

- At high q^2 , disagreements of the order of 3 4% observed.
- Can be explained by fixed order result (Our MC) vs resummed soft logs in PHOTOS, which are more pronounced at the end-point.

Effect of charmonium resonances Implementation

Charmonium resonances implemented through

$$C_9^{
m eff}(q^2) = C_9 + \Delta C_9(q^2) \; ,$$

$$\Delta C_9(q^2) = \Delta C_9(0) + \eta_{J/\psi} e^{i\delta_{J/\psi}} rac{q^2}{m_{J/\psi}^2} rac{m_{J/\psi}\Gamma_{J/\psi}}{\left(m_{J/\psi}^2 - q^2
ight) - im_{J/\psi}\Gamma_{J/\psi}} ,$$

using single-subtracted dispersion relation (at $q^2 = 0$).

Charmonium resonances implemented through

$$C_9^{
m eff}(q^2) = C_9 + \Delta C_9(q^2) \; ,$$

$$\Delta C_9(q^2) = \Delta C_9(0) + \eta_{J/\psi} e^{i\delta_{J/\psi}} \frac{q^2}{m_{J/\psi}^2} \frac{m_{J/\psi} \Gamma_{J/\psi}}{\left(m_{J/\psi}^2 - q^2\right) - im_{J/\psi} \Gamma_{J/\psi}} ,$$

using single-subtracted dispersion relation (at $q^2 = 0$).

- Only interference between rare mode and resonant mode included in the MC study.
- Because of sampling efficiency, replace electron by a lepton with mass of $10 m_e$.
- $\eta_{J/\psi}$ fixed by using the measured values of the branching fractions $\mathcal{B}(\bar{B} \to \bar{K}J/\psi)$ and $\mathcal{B}(J/\psi \to \mu^+\mu^-)$.

Results: Distributions in q^2 with $\delta_{J/\psi} = 0$ (maximal interference)

- Only interference effects considered.
- Difference between $10m_e$ and m_μ follows the expected $\ln m_\ell$ scaling.

On QED corrections to $\bar{B} \to \bar{K} \ell^+ \ell^-$ and R_K : Theory vs Experiment

Results: Distributions in q^2 with $\delta_{J/\psi} = 0$ (maximal interference)

- Only interference effects considered.
- ▶ Difference between 10m_e and m_µ follows the expected ln m_ℓ scaling.
- The interference effect is more pronounced as the SD- and J/Ψ-contribution are not out of phase.
- minimal effect on the $q^2 \in [1.1, 6] \text{ GeV}^2$ bin.

Results: Distributions in q^2 with $\delta_{J/\psi} = 0$ (maximal interference)

- Only interference effects considered.
- ▶ Difference between 10m_e and m_µ follows the expected ln m_ℓ scaling.
- The interference effect is more pronounced as the SD- and J/Ψ-contribution are not out of phase.
- minimal effect on the $q^2 \in [1.1, 6] \text{ GeV}^2$ bin.

 \implies R_K safe wrt interference between LD and SD amplitudes!

Results (Semi-analytic)

In the semi-analytic approach (using the splitting function), we include the contribution from the modulus squared part of the J/ψ resonance, as well as the ψ(2S) resonance.

Results (Semi-analytic)

In the semi-analytic approach (using the splitting function), we include the contribution from the modulus squared part of the J/ψ resonance, as well as the ψ(2S) resonance.

• With an electron-like photon energy cut-off, the peak of the J/ψ is probed at $q^2 = 6 \text{ GeV}^2$, due to migration of radiation effects.

- ▶ EFT analysis captures all hard collinear logs ln m_{ℓ} . No further contribution from structure dependence.
- Our MC, based on EFT analysis, is consistent with PHOTOS.

- ▶ EFT analysis captures all hard collinear logs ln m_{ℓ} . No further contribution from structure dependence.
- Our MC, based on EFT analysis, is consistent with PHOTOS.
- ► R_K is safe as far as the interference effects of charmonium resonances is concerned.
 - \implies this also applies to other LFU ratios by extension.

- Fixing ambiguities in the UV counterterms, and structure-dependent corrections (including ln m
 _K contributions) 2209.06925 [SN, R.Zwicky], [Ongoing].
- Analysis of moments of the angular distribution [Ongoing].

- Fixing ambiguities in the UV counterterms, and structure-dependent corrections (including ln m
 _K contributions) 2209.06925 [SN, R.Zwicky], [Ongoing].
- Analysis of moments of the angular distribution [Ongoing].
- Charged-current semileptonic decays $(\bar{B} \rightarrow D\ell\nu)$. Unidentified neutrino in final state makes it hard to reconstruct *B* meson and to apply a cut-off on photon energy.

BACKUP SLIDES

Bordone et al. [1605.07633] already performed a calculation to estimate QED corrections in $\bar{B} \to \bar{K}^{(*)}\ell^+\ell^-$ and $R_{K^{(*)}}$, working in single differential in q^2 .

In our work,

- Results at the *full (double)* differential level are given, and hence they can be used for angular analysis (moments).
 Moreover, knowledge of the lepton angles are necessary for *applying kinematical cuts* on the photon energy.
- ▶ We work with *full matrix elements*, starting from an *EFT Lagrangian description*. Hence, we can capture effects beyond collinear $\ln \hat{m}_{\ell}$ terms, such as $\ln \hat{m}_{K}$ (except structure *dependent contributions*) which are not necessarily so small.
- We present a *detailed discussion on IR divergences*, and demonstrate explicitly the conditions under which they cancel.

Theoretical Framework

We use an *EFT*, for $\bar{B}(p_B) \rightarrow \bar{K}(p_K) \ell^+(\ell_2) \ell^-(\ell_1)$.

$$\begin{split} \mathcal{L}_{\mathrm{int}}^{\mathrm{EFT}} &= g_{\mathrm{eff}} \, L^{\mu} V_{\mu}^{\mathrm{EFT}} + \mathrm{h.c.} \ , \\ V_{\mu}^{\mathrm{EFT}} &= \sum_{n \geq 0} \frac{f_{\pm}^{(n)}(0)}{n!} (-D^2)^n [(D_{\mu}B^{\dagger}) \mathcal{K} \mp B^{\dagger}(D_{\mu}\mathcal{K})] \ , \end{split}$$

where D_{μ} is the QED covariant derivative and $f_{\pm}^{(n)}(0)$ denotes the n^{th} derivative of the $B \to K$ form factor $f_{\pm}(q^2)$.

$$egin{array}{rcl} H^{\mu}_{0}(q^{2}_{0}) \equiv \langle ar{K} | V_{\mu} | ar{B}
angle &=& f_{+}(q^{2}_{0})(p_{B}\!+\!p_{K})^{\mu} + f_{-}(q^{2}_{0})(p_{B}\!-\!p_{K})^{\mu} \ &=& \langle ar{K} | V^{
m EFT}_{\mu} | ar{B}
angle + \mathcal{O}(e) \;, \end{array}$$

$$L_{\mu} \equiv \bar{\ell}_1 \Gamma^{\mu} \ell_2 \,, \quad V_{\mu} \equiv \bar{s} \gamma_{\mu} (1 - \gamma_5) b \,,$$

$$g_{\text{eff}} \equiv \frac{G_F}{\sqrt{2}} \lambda_{\text{CKM}}, \qquad \Gamma^{\mu} \equiv \gamma^{\mu} (C_V + C_A \gamma_5) , \qquad C_{V(A)} = \alpha \frac{C_{9(10)}}{2\pi}$$

Theoretical Framework

IR Divergences

The real integrals are split into *IR sensitive parts* which can be done *analytically* and a necessarily regular part which is dealt with numerically.

$$\mathcal{F}^{(a)}_{ij}(\delta_{\mathrm{ex}}) = \; rac{d^2 \Gamma^{\mathrm{LO}}}{dq^2 dc_\ell} ilde{\mathcal{F}}^{(s)}_{ij}(\omega_s) + ilde{\mathcal{F}}^{(hc)(a)}_{ij}(\underline{\delta}) + \Delta \mathcal{F}^{(a)}_{ij}(\underline{\delta}) \; ,$$

with $\tilde{\mathcal{F}}_{ij}^{(s)}$ $(\tilde{\mathcal{F}}_{ij}^{(hc)(a)})$ containing all *soft* (*hard-collinear*) singularities, whereas $\Delta \mathcal{F}$ is regular.

We adopt the *phase space slicing method*, which requires the introduction of two auxiliary (unphysical) cut-offs $\omega_{s,c}$,

$$\omega_s \ll 1 \;, \quad \frac{\omega_c}{\omega_s} \ll 1 \;.$$

[Note: Hard-collinear $\equiv \ln \hat{m}_{\ell}$ sensitive terms.]

Phase Space slicing conditions

$$ar{p}_B^2 \ge m_B^2 \left(1 - \omega_s
ight) \iff E_\gamma^{p_B - \mathrm{RF}} \le rac{\omega_s m_B}{2},
onumber \ k \cdot \ell_{1,2} \le \omega_c m_B^2 \; .$$

All soft divergences cancel between real and virtual, independent of the choice of differential variables.

IR Divergences Hard Collinear Real

In the collinear limit $(k||\ell_1)$, the matrix element squared factorises:

$$|\mathcal{A}_{\ell_1||\gamma}^{(1)}|^2 = rac{e^2}{(k \cdot \ell_1)} \hat{Q}_{\ell_1}^2 \tilde{P}_{f o f\gamma}(z) |\mathcal{A}^{(0)}(q_0^2, c_0)|^2 + \mathcal{O}(m_{\ell_1}^2) \; ,$$

where $|\mathcal{A}^{(0)}(q_0^2, c_0)|^2 = |\mathcal{A}^{(0)}_{\bar{B} \to \bar{K} \ell_{1\gamma} \bar{\ell}_2}|^2$ and $\tilde{P}_{f \to f\gamma}(z)$ is the collinear part of the splitting function for a fermion to a photon

$$ilde{P}_{f
ightarrow f\gamma}(z)\equiv \left(rac{1+z^2}{1-z}
ight)$$

z gives the momentum fraction of the photon and lepton.

$$\ell_1 = z \ell_{1\gamma}, \quad k = (1-z) \ell_{1\gamma} ,$$

which then implies

$$q^2 = zq_0^2 .$$

Lower limit on z integration: Depends on the cut-off δ_{ex} .

IR Divergences Cancellation of hc logs

In $\{q_0^2, c_0\}$ variables, when fully photon inclusive,

$$\left. \frac{d^2 \Gamma}{dq_0^2 dc_0} \right|_{\ln \hat{m}_{\ell_1}} = \frac{d^2 \Gamma^{\mathrm{LO}}}{dq_0^2 dc_0} \left(\frac{\alpha}{\pi}\right) \hat{Q}_{\ell_1}^2 \ln \hat{m}_{\ell_1} \times C_{\ell_1}^{(0)} ,$$

where

$$C_{\ell_1}^{(0)} = \left[rac{3}{2} + 2\lnar{z}(\omega_s)
ight]_{ ilde{\mathcal{F}}^{(hc)}} + \left[-1 - 2\lnar{z}(\omega_s)
ight]_{ ilde{\mathcal{F}}^{(s)}} + \left[rac{3}{2} - 2
ight]_{ ilde{\mathcal{H}}} = 0 \; .$$

On the other hand, in $\{q^2,c_\ell\}$ variables,

$$\frac{d^2 \Gamma}{dq^2 dc_\ell}\Big|_{\rm hc} = \frac{\alpha}{\pi} (\hat{Q}_{\ell_1}^2 \mathcal{K}_{\rm hc}(q^2,c_\ell) \ln \hat{m}_{\ell_1} + \hat{Q}_{\ell_2}^2 \mathcal{K}_{\rm hc}(q^2,-c_\ell) \ln \hat{m}_{\ell_2}) ,$$

where $K_{\rm hc}(q^2, c_\ell)$ is a non-vanishing function.

After integration over q^2 and c_ℓ , the above vanishes.

However, with a cut-off δ_{ex} , collinear logs survive in both differential variables!

The real amplitude can be decomposed,

$$\mathcal{A}^{(1)} = \hat{Q}_{\ell_1} a^{(1)}_{\ell_1} + \delta \mathcal{A}^{(1)} \; ,$$

into a term $\hat{Q}_{\ell_1} a_{\ell_1}^{(1)}$ with all terms proportional to \hat{Q}_{ℓ_1} , and the remainder $\delta \mathcal{A}^{(1)}$.

$$a_{\ell_1}^{(1)} = -eg_{ ext{eff}}ar{u}(\ell_1) \left[rac{2\epsilon^*\cdot\ell_1 + \epsilon\!\!\!/^*k}{2k\cdot\ell_1} \Gamma\cdot H_0(q_0^2)
ight] v(\ell_2) \ ,$$

which contains all $1/(k \cdot \ell_1)$ -terms.

The structure-dependence of this term is encoded in the form factor H_0 .

The amplitude square is given by

$$\sum_{\text{pol}} |\mathcal{A}^{(1)}|^2 = \sum_{\text{pol}} |\delta \mathcal{A}^{(1)}|^2 - \hat{Q}_{\ell_1}^2 \sum_{\text{pol}} |\mathbf{a}_{\ell_1}^{(1)}|^2 + 2\hat{Q}_{\ell_1} \text{Re}[\sum_{\text{pol}} \mathcal{A}^{(1)} \mathbf{a}_{\ell_1}^{(1)*}] ,$$

where it will be important that $\mathcal{A}^{(1)}$ is gauge invariant.

The *first term* is manifestly free from hard-collinear logs $\ln m_{\ell_1}$.

We use gauge invariance and set $\xi = 1$ under which the polarisation sum

$$\sum_{
m pol} \epsilon^*_\mu \epsilon_
u = (-g_{\mu
u} + (1-\xi)k_\mu k_
u/k^2)
ightarrow -g_{\mu
u} \; ,$$

collapses to the metric term only.

The second term evaluates to

$$\int d\Phi_{\gamma} \, \hat{Q}_{\ell_1}^2 \sum_{\text{pol}} |a_{\ell_1}^{(1)}|^2 = \int d\Phi_{\gamma} \, \hat{Q}_{\ell_1}^2 \frac{\mathcal{O}(m_{\ell_1}^2) + \mathcal{O}(k \cdot \ell_1)}{(k \cdot \ell_1)^2} = \mathcal{O}(1) \, \hat{Q}_{\ell_1}^2 \ln m_{\ell_1}$$

where we used $k - \ell_1 = \mathcal{O}(m_{\ell_1}^2)$, valid in the collinear region.

We now turn to the *third term*.

Using anticommutation relations, $k - \ell_1 = \mathcal{O}(m_{\ell_1}^2)$ in the collinear limit, and the EoMs, we rewrite $a_{\ell_1}^{(1)}$ as

$$a_{\ell_1}^{(1)} = -eg_{ ext{eff}}ar{u}(\ell_1)\left[rac{4\epsilon^*\cdot\ell_1+m_{\ell_1}\epsilon^*}{2k\cdot\ell_1}\Gamma\cdot H_0(q_0^2)
ight]v(\ell_2) \ .$$

Gauge invariance $k \cdot A^{(1)} = 0$ implies $\ell_1 \cdot A^{(1)} = O(m_{\ell_1}^2)$ in the collinear region.

Therefore, the first part of $a_{\ell_1}^{(1)}$ contributes to

$$\hat{Q}_{\ell_1} \mathrm{Re}[\sum_{\mathrm{pol}} \mathcal{A}^{(1)} a_{\ell_1}^{(1)*}] \to c_1 \hat{Q}_{\ell_1}^2 \frac{\mathcal{O}(m_{\ell_1}^2)}{(k \cdot \ell_1)^2} + c_2 \hat{Q}_{\ell_1} \hat{Q}_X \frac{\mathcal{O}(m_{\ell_1}^2)}{(k \cdot \ell_1)} ,$$

where
$$X \in \{\overline{B}, \overline{K}, \overline{\ell}_2\}$$
.

The second part of $a_{\ell_1}^{(1)}$ contributes to

$$\hat{Q}_{\ell_1} \mathrm{Re}[\sum_{\mathrm{pol}} \mathcal{A}^{(1)} a_{\ell_1}^{(1)*}] o c_1' \hat{Q}_{\ell_1}^2 rac{\mathcal{O}(m_{\ell_1}^2)}{(k \cdot \ell_1)^2} + c_2' \hat{Q}_{\ell_1} \hat{Q}_X rac{\mathcal{O}(m_{\ell_1})}{(k \cdot \ell_1)} \ ,$$

Thus, using gauge invariance, one concludes that $\delta A^{(1)}$ (indicated by terms $\propto \hat{Q}_X$ in the above) does not lead to collinear logs.

We consider *relative* corrections. For a single differential in $\frac{d}{da_2^2}$,

$$\Delta^{(a)}(q_a^2;\delta_{\mathrm{ex}}) = \left(rac{d\Gamma^{\mathrm{LO}}}{dq_a^2}
ight)^{-1} rac{d\Gamma(\delta_{\mathrm{ex}})}{dq_a^2} \Bigg|_lpha \, ,$$

where the numerator and denominator are integrated separately over $\int_{-1}^{1} dc_a$ respectively.

It is important to integrate the QED correction and the LO separately as this corresponds to the experimental situation.

QED corrections are taken into account in the experimental analysis by using PHOTOS.

```
\implies Second part of my talk!
```


- In photon-inclusive case (δ_{ex} = δ^{inc}_{ex}, dashed lines), all IR sensitive terms cancel in the q₀² variable locally.
- (Approximate) lepton universality on the plots on the left.
- Effects due to the photon energy cuts are sizeable since hard-collinear logs do not cancel in that case. More pronounced for electrons.

Results c_a distribution

We consider *relative* QED corrections. For a single differential in $\frac{d}{da^2}$,

$$\Delta^{(a)}(q_a^2;\delta_{\mathrm{ex}}) = \left(rac{d\Gamma^{\mathrm{LO}}}{dq_a^2}
ight)^{-1} rac{d\Gamma(\delta_{\mathrm{ex}})}{dq_a^2}\Big|_lpha \, ,$$

where the numerator and denominator are integrated separately over $\int_{-1}^{1} dc_a$ respectively. In addition, we define the single differential in $\frac{d}{dc_a}$

$$\Delta^{(a)}(c_a, [q_1^2, q_2^2]; \delta_{\mathrm{ex}}) = \left(\int_{q_1^2}^{q_2^2} \frac{d^2 \Gamma^{\mathrm{LO}}}{dq_a^2 dc_a} dq_a^2
ight)^{-1} \int_{q_1^2}^{q_2^2} \frac{d^2 \Gamma(\delta_{\mathrm{ex}})}{dq_a^2 dc_a} dq_a^2 \Big|_{lpha} \, ,$$

where the non-angular variable is binned.

It is important to integrate the QED correction and the LO separately as this corresponds to the experimental situation.

- ▶ Enhanced effect towards the endpoints $\{-1, 1\}$ is partly due to the special behaviour of the LO differential rate which behaves like $\propto (1 c_{\ell}^2) + \mathcal{O}(m_{\ell}^2)$ and explains why the effect is less pronounced for muons.
- Even in cℓ. Almost even in c₀ (up to non-collinear effects), since c₀ measured wrt to ℓ₁ in q₀-RF.

Same comments as before apply.

More enhanced than the neutral meson case.

Results Hard collinear $\ln \hat{m}_{\ell}$ contributions in q_a^2

- Cancellation of hc ln \hat{m}_{ℓ} in fully inclusive case ($\delta_{ex} = \delta_{ex}^{inc}$).
- ► Tighter cut ⇒ larger corrections.
- Electron and muon cases are scaled by a factor $\approx \frac{\ln \hat{m}_e}{\ln \hat{m}_{\mu}} \approx 2.36.$

Tighter cut on electrons than muons \implies Partial compensation \implies QED corrections to R_{K} 'relatively' small.

To understand the distortion better, consider the following analysis in the collinear region:

$$|\mathcal{A}^{(0)}(q_0^2,c_0)|^2 \propto f_+(q_0^2)^2 = f_+(q^2/z)^2.$$

Since z < 1 in general, it is clear that momentum transfers of a higher range are probed.

For example, when $c_\ell = -1$, maximising the effect, one gets

$$z_{\delta_{ ext{ex}}}(q^2)\Big|_{c_\ell=-1} = rac{q^2}{q^2+\delta_{ ext{ex}}m_B^2} \ , \quad (q_0^2)_{ ext{max}} = q^2+\delta_{ ext{ex}}m_B^2 \ ,$$

For $\delta_{\mathrm{ex}}=0.15$, $q^2=6\,\mathrm{GeV}^2$ one has $(q_0^2)_{\mathrm{max}}=10.18\,\mathrm{GeV}^2.$

 \implies Problematic for probing R_K in $q^2 \in [1.1, 6]$ GeV² range, due to charmonium resonances!

Furthermore, in photon-inclusive case, the lower boundary for z becomes $z_{\rm inc}(c_\ell)|_{m_K \to 0} = \hat{q}^2$ such that $(q_0^2)_{\rm max} = m_B^2$.

 \implies Entire spectrum is probed for any fixed value of q^2 .

$$\Delta_{\rm QED} R_K \approx \left. \frac{\Delta \Gamma_{K\mu\mu}}{\Gamma_{K\mu\mu}} \right|_{q_0^2 \in [1.1,6] \, \text{GeV}}^{m_B^{\rm rec} = 5.175 \, \text{GeV}} - \frac{\Delta \Gamma_{Kee}}{\Gamma_{Kee}} \left|_{q_0^2 \in [1.1,6] \, \text{GeV}}^{m_B^{\rm rec} = 4.88 \, \text{GeV}} \approx +1.7\% \right.$$

 \implies Well below the current experimental error reported by LHCb.

$$\Delta_{\rm QED} R_{\rm K} \approx \left. \frac{\Delta \Gamma_{{\rm K}\mu\mu}}{\Gamma_{{\rm K}\mu\mu}} \right|_{q_0^2 \in [1.1,6] \, {\rm GeV}^2}^{m_B^{\rm rec} = 5.175 \, {\rm GeV}} - \frac{\Delta \Gamma_{{\rm K}ee}}{\Gamma_{{\rm K}ee}} \left|_{q_0^2 \in [1.1,6] \, {\rm GeV}^2}^{m_B^{\rm rec} = 4.88 \, {\rm GeV}} \approx +1.7\% \right.$$

\implies Well below the current experimental error reported by LHCb.

However, effect of cuts can be significant. In Bordone et al. '16, in addition to the above energy cuts, a tight angle cut was also used, and they reported a correction to R_K of

 $\Delta_{
m QED} R_K pprox +3.0\%$.

$$\Delta_{\rm QED} R_{\rm K} \approx \left. \frac{\Delta \Gamma_{{\rm K}\mu\mu}}{\Gamma_{{\rm K}\mu\mu}} \right|_{q_0^2 \in [1.1,6] \, {\rm GeV}^2}^{m_B^{\rm rec} = 5.175 \, {\rm GeV}} - \frac{\Delta \Gamma_{{\rm K}ee}}{\Gamma_{{\rm K}ee}} \left|_{q_0^2 \in [1.1,6] \, {\rm GeV}^2}^{m_B^{\rm rec} = 4.88 \, {\rm GeV}} \approx +1.7\% \right.$$

\implies Well below the current experimental error reported by LHCb.

However, effect of cuts can be significant. In Bordone et al. '16, in addition to the above energy cuts, a tight angle cut was also used, and they reported a correction to R_K of

$$\Delta_{
m QED} R_{
m K} pprox + 3.0\%$$
 .

 \implies Highlights the importance of building a MC to cross-check the experimental analysis: PHOTOS.

► The different photon energy cuts for the electron and the muon cases causes the shift in R_K due to QED corrections to be relatively low.

Comparison with PHOTOS Preliminary Results: Distributions in q^2 (muon case)

Again, excellent agreement with PHOTOS here.

• A photon energy cut-off of $m_B^{\text{rec}} > 5.175 \text{ GeV}$ is used.

Preliminary Results: Distributions in q^2 with $\delta_{J/\psi} = 1.47$

- Only interference effects considered.
- Difference between 10m_e and m_µ follows the expected ln m_ℓ scaling.
- With δ_{J/Ψ} ≈ π/2, short distance and charmonium mode are out of phase.
- Minimal effect on the $q^2 \in [1, 6] \text{ GeV}^2$ bin.

Splitting function formalism Focussing on collinear logs

Master equation for collinear divergences $(k||\ell_1)$

$$\Delta_{\rm hc}^{(\ell)}(\hat{q}_0^2, c_0) = \frac{\alpha}{\pi} \hat{Q}_{\ell_1}^2 \left(\frac{d^2 \Gamma^{\rm LO}}{d\hat{q}_0^2 dc_0} \right)^{-1} \left(\int_{z_{\ell_1}^{\delta_{\rm ex}}}^1 dz P_{f \to f\gamma}(z) \frac{d^2 \Gamma^{\rm LO}}{d\hat{q}_0^2 dc_0} \right) \ln \frac{\mu_{\rm hc}}{m_{\ell}}$$

where $\mu^2_{\sf hc} = {\cal O}(m^2_B) pprox 6 q^2_0$, and

$$P_{f o f \gamma}(z) = \lim_{z^* o 0} \left[rac{1+z^2}{(1-z)} heta((1-z^*)-z) + (rac{3}{2}+2\ln z^*) \delta(1-z)
ight] \; ,$$

is the splitting function of a fermion to a photon.

Recall: z is the momentum fraction of the photon-lepton system carries by the lepton $(q^2 = zq_0^2)$.

The differential rate factorises from the *z*-integration in the above variables.

Results (Semi-analytic)

- In the semi-analytic approach (using the splitting function), we include the contribution from the modulus squared part of the J/ψ resonance, as well as the ψ(2S) resonance.
- ▶ Peak of the resonance (only modulus squared part) eliminated through a window $\Delta \omega^2 = 0.1 \text{ GeV}^2$ around it.
- ▶ For q² < 6 GeV², interference effects are small, even in the electron case.

LHCb plot

- Resonant mode has 10³ more events than non-resonant mode.
- For the electron case, the non-resonant mode has contributions from $\bar{B} \rightarrow J/\psi(e^+e^-)\bar{K}$ due to QED, and loose photon energy cut.