

Angular analysis of the decay $\Lambda_h^0 \to \Lambda \ell^+ \ell^$ at high q^2

2nd IJCLab Flavourday 02/June/2023

Supported by:

erc

European Research Council Established by the European Commission

Johannes Albrecht¹, Janina Nicolini^{1,2}, Marie-Hélène Schune² (¹TU Dortmund, ²IJCLab Orsay)

MOITIVATION

• FCNC sensitive to new physics $\rightarrow \mathscr{B}(b \rightarrow s \ell^+ \ell^-) \propto 10^{-6}$

• For \mathscr{B} extremely difficult to disentangle Wilson coefficients C_i

MOITIVATION

- FCNC sensitive to new physics $\rightarrow \mathscr{B}(b \rightarrow s \ell^+ \ell^-) \propto 10^{-6}$
- For \mathscr{B} extremely difficult to disentangle Wilson coefficients C_i
- Angular analyses are interesting since:
 - 1. they allow us to test form factor (FF) predictions
 - 2. extract limits on Wilson coefficients C_i

MOITIVATION

- FCNC sensitive to new physics $\rightarrow \mathscr{B}(b \rightarrow s\ell^+\ell^-) \propto 10^{-6}$
- For \mathscr{B} extremely difficult to disentangle Wilson coefficients C_i
- Angular analyses are interesting since:
 - they allow us to test form factor (FF) predictions
 - extract limits on Wilson coefficients C_i 2.
- $|A_{\lambda}|^2$ with A_{λ} being transversity amplitudes

• $A_{\lambda}(H_i(FF), C_i)$ depend on Wilson coefficients and helicity amplitudes H_i \rightarrow non-local FF contributions introduce q^2 dependence

Λ_b^0 ANGULAR ANALYSIS

- Most signal at high $q^2 \rightarrow$ focus of analysis
- Analysis with electron and muon mode
- Only muon mode observed
 - → factor ~4 smaller yield for electron

Λ_b^0 ANGULAR ANALYSIS

- Most signal at high $q^2 \rightarrow$ focus of analysis
- Analysis with electron and muon mode
- Only muon mode observed
 - → factor ~4 smaller yield for electron
- Rich angular structure due to subleading weak decay

$$\Lambda_b^0 \to \Lambda(\to p\pi^-) \,\ell^+\ell^-$$

- Using both lepton types enables \rightarrow independent LFU test: $K_i^{\text{LFU}} = K_i(\mu) - K_i(e)$
 - \rightarrow to mostly remove charm loop contribution

ANGULAR DISTRIBUTION

- Assuming an unpolarised Λ_h^0
- The full angular distribution is

$$\begin{split} K(q^2,\varphi,\cos\vartheta_\ell,\cos\vartheta_\Lambda) &= \frac{8\pi}{3} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \mathrm{d}\varphi \mathrm{d}\cos\vartheta_\ell \mathrm{d}\cos\vartheta_\Lambda} \\ &= \left[(K_{1ss}\sin^2\vartheta_\ell + K_{1cc}\cos^2\vartheta_\ell + (K_{2ss}\sin^2\vartheta_\ell + K_{2cc}\cos^2\vartheta_\ell + (K_{3sc}\sin\vartheta_\ell\cos\vartheta_\ell + K_{3s}\sin\vartheta_\ell\cos\vartheta_\ell + K_{3s}\sin\vartheta_\ell\cos\vartheta_\ell + K_{4s}\sin\vartheta_\ell\cos\vartheta_\ell + K_{4s}\sin\vartheta_\ell}$$

• Coefficients K_i can be measured normalised

as CP even
$$S_i = \frac{K_i + \bar{K}_i}{\frac{d\Gamma}{dq^2} + \frac{d\bar{\Gamma}}{dq^2}}$$
 or CP asymmetries $A_i =$

• A_{1ss} and A_{1cc} cannot be accessed via transformation of the angles \rightarrow needs flavour-tagged analysis (which is possible)

$$\frac{K_i - \bar{K}_i}{\mathrm{d}q^2} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^2}$$

Λ_b^0 ANGULAR ANALYSIS

• Likelihood fit analysis with LHCb dataset of 9 fb⁻¹in high q^2 bin

- Cut-based preselection and BDT to remove combinatorial
 - Preselection selects only real Λ
 - After full offline selection only combinatorial remaining

Λ_{h}^{0} ANGULAR ANALYSIS

• Likelihood fit analysis with LHCb dataset of 9 fb⁻¹ in high q^2 bin

- Cut-based preselection and BDT to remove combinatorial
 - Preselection selects only real Λ
 - After full offline selection only combinatorial remaining

• Hyperon decay $\Lambda \rightarrow p\pi$ within or outside of VELO \rightarrow check, if splitting in track categories necessary

CROSS-CHECK MASS FIT

- Linear sum of two double sided Crystal Ball PDFs with shared mean
- Tail parameter as well as the fraction of the widths fixed to MC
- Background modelled with **exponential**
- Yields, BKG slope, mean and widths kept floating

BDT cut optimised independently

TOWARDS THE ANGULAR FIT

- If possible perform flavour-tagged angular analysis for muon mode
 - \rightarrow extract CP even and odd angular coefficients
- If only combinatorial BKG, the total PDF is:

$$f_{sig} \times \mathsf{PDF}_{sig}(\vartheta_l, \vartheta_\Lambda, \varphi) \mathsf{PDF}_{sig}(m) -$$

• Total PDF needs to be efficiency ϵ corrected

 $\mathsf{PDF}_{sig}(\vartheta_l, \vartheta_\Lambda, \varphi) \to \mathsf{PDF}_{sig}(\vartheta_l, \vartheta_\Lambda, \varphi) \times \epsilon(\vartheta_l, \vartheta_\Lambda, \varphi)$

 \rightarrow angular acceptance accounts for detector effects, reconstruction and selection effects

+ $(1 - f_{sig}) \times \mathsf{PDF}_{bkg}(\vartheta_l, \vartheta_\Lambda, \varphi) \mathsf{PDF}_{bkg}(m)$

CROSS-CHECK BKG ANGLES DD

- Testing if upper and lower BKG sidebands compatible
 - \rightarrow allows to check if no physics BKG remained

No significant difference

CROSS-CHECK BKG ANGLES DD

• Testing if upper and lower BKG sidebands compatible \rightarrow allows to check if no physics BKG remained

ANGULAR ACCEPTANCE

Angular acceptance fits with Legendre polynomial

 \rightarrow supports to not split in track categories

In Agreement within 1σ

OUTLOOK

- Produce the toys to study full PDF
 - \rightarrow enables first sensitivity studies on the angular LFU test
- No splitting in track categories needed
 - \rightarrow study if full 3D angular fit can be accessed (flavour-tagged)
 - \rightarrow study if same assumption holds for electrons
- Stay tuned for the results!

MOTIVATION

- Stringent test of B anomalies in meson sector
- Enable to test possible spin dependence of NP
 - \rightarrow baryon half-integer spin
- Four weakly decaying baryons with one b quark

But very small production probability f_i \rightarrow focus on Λ_{h}^{0} decays

Two spectator quarks

BACKUP - ANGULAR COEFFIENCTS

• Assuming an unpolarised Λ_b^0

• The full angular distribution is

$$\begin{split} K(q^2,\varphi,\cos\vartheta_\ell,\cos\vartheta_\Lambda) &= \frac{8\pi}{3} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \mathrm{d}\varphi \mathrm{d}\cos\vartheta_\ell \mathrm{d}\cos\vartheta_\Lambda} \\ &= \left[(K_{1ss}\sin^2\vartheta_\ell + K_{1cc}\cos^2\vartheta_\ell + K_{1cc}\cos^2\vartheta_\ell + K_{2ss}\sin^2\vartheta_\ell + K_{2cc}\cos^2\vartheta_\ell + K_{2ss}\sin^2\vartheta_\ell + K_{2cc}\cos^2\vartheta_\ell + K_{4ss}\sin\vartheta_\ell \right) \\ &+ (K_{4sc}\sin\vartheta_\ell\cos\vartheta_\ell + K_{4s}\sin\vartheta_\ell) \\ &+ (K_{4sc}\sin\vartheta_\ell\cos\vartheta_\ell + K_{4s}\sin\vartheta_\ell) \end{split}$$

 $K_{1c} \cos \vartheta_{\ell})$ $K_{2c} \cos \vartheta_{\ell}) \cos \vartheta_{\Lambda}$ $\sin \vartheta_{\Lambda} \sin \varphi$ $\sin \vartheta_{\Lambda} \cos \varphi.$

$$\begin{split} K_{1ss}(q^2) &= \frac{1}{4} \left[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 + 2|A_{\perp_0}^R|^2 + 2|A_{\parallel_0}^R|^2 + \\ K_{1cc}(q^2) &= \frac{1}{2} \left[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 + (R \leftrightarrow L) \right] \\ K_{1c}(q^2) &= -\operatorname{Re} \left\{ A_{\perp_1}^R A_{\parallel_1}^{*R} - (R \leftrightarrow L) \right\} \\ K_{2ss}(q^2) &= + \frac{\alpha}{2} \operatorname{Re} \left\{ A_{\perp_1}^R A_{\parallel_1}^{*R} + 2A_{\perp_0}^R A_{\parallel_0}^{*R} + (R \leftrightarrow L) \right\} \\ K_{2cc}(q^2) &= + \alpha \operatorname{Re} \left\{ A_{\perp_1}^R A_{\parallel_1}^{*R} + (R \leftrightarrow L) \right\} \\ K_{2c}(q^2) &= - \frac{\alpha}{2} \left[|A_{\perp_1}^R|^2 + |A_{\parallel_1}^R|^2 - (R \leftrightarrow L) \right] \\ K_{3sc}(q^2) &= + \frac{\alpha}{\sqrt{2}} \operatorname{Im} \left\{ A_{\perp_1}^R A_{\perp_0}^{*R} - A_{\parallel_1}^R A_{\parallel_0}^{*R} + (R \leftrightarrow L) \right\} \\ K_{4sc}(q^2) &= + \frac{\alpha}{\sqrt{2}} \operatorname{Re} \left\{ A_{\perp_1}^R A_{\parallel_0}^{*R} - A_{\parallel_1}^R A_{\parallel_0}^{*R} + (R \leftrightarrow L) \right\} \\ K_{4s}(q^2) &= - \frac{\alpha}{\sqrt{2}} \operatorname{Re} \left\{ A_{\perp_1}^R A_{\perp_0}^{*R} - A_{\parallel_1}^R A_{\parallel_0}^{*R} - (R \leftrightarrow L) \right\} \end{split}$$

