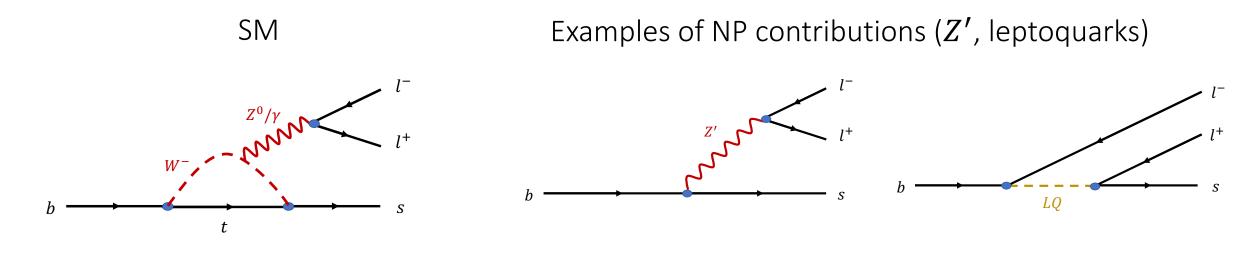


Towards a measurement of R_{K^*} at high- q^2

Christina Agapopoulou, Martino Borsato, Vladimir Gligorov, Peilian Li, <u>Guillaume Pietrzyk</u>, Miguel Ruiz Diaz, Marie-Hélène Schune

2nd June 2023

How to find New Physics (NP)? The Holy Grail of particle physics

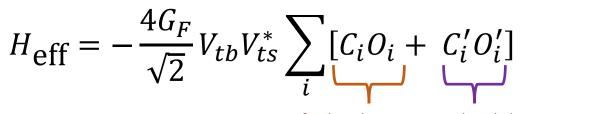

Direct searches (*« High Energy Frontier »*):

- Produce real NP particles
- Limited by energy of collider

Indirect searches (*« High Luminosity Frontier »*):

- Study of decays of known particles mediated by virtual intermediary states which can be SM or NP particles
- Rare processes \rightarrow lot of data needed

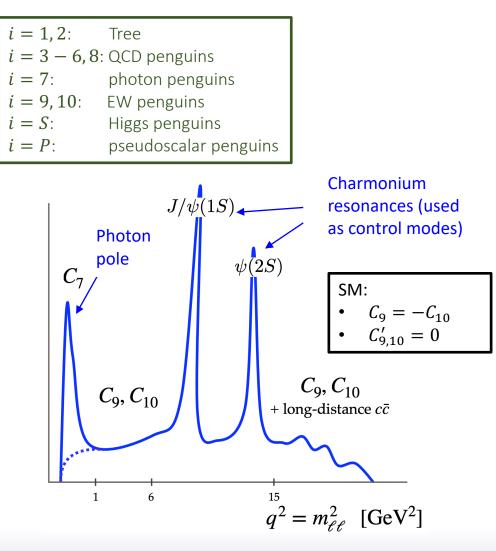
$b \rightarrow sll$ transitions as indirect probes of NP



- Electroweak (EW) penguin diagrams allow $b \rightarrow sll$ transitions in the SM
- $\mathcal{B} \sim 10^{-6}$ in SM: rare processes!
- NP can significantly alter these processes, such as in:
 - Angular distributions (<u>Janina</u> and <u>Gaelle</u>'s talks)
 - Decay rates (focus on this talk)

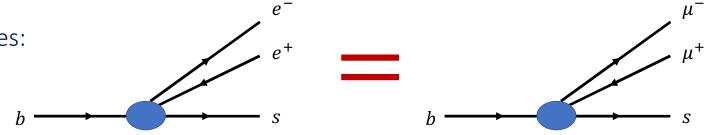
A bit of theory on $b \rightarrow sll$ transitions

• $b \rightarrow sll$ neutral currents can be described by the *effective* Hamiltonian:



Left chirality

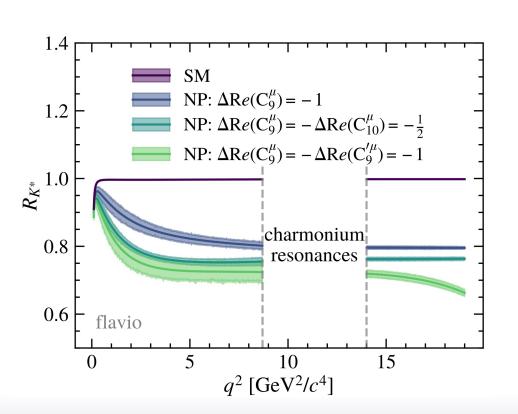
Right chilarity, suppresed by SM


- $C_i^{(\prime)}$ (Wilson coeff.): short-distance physics, sensitive to high energies $(E > \Lambda_{EW})$
- $O_i^{(\prime)}$ (Operators): long-distance physics, non-perturbative, dependent to hadronic form factors

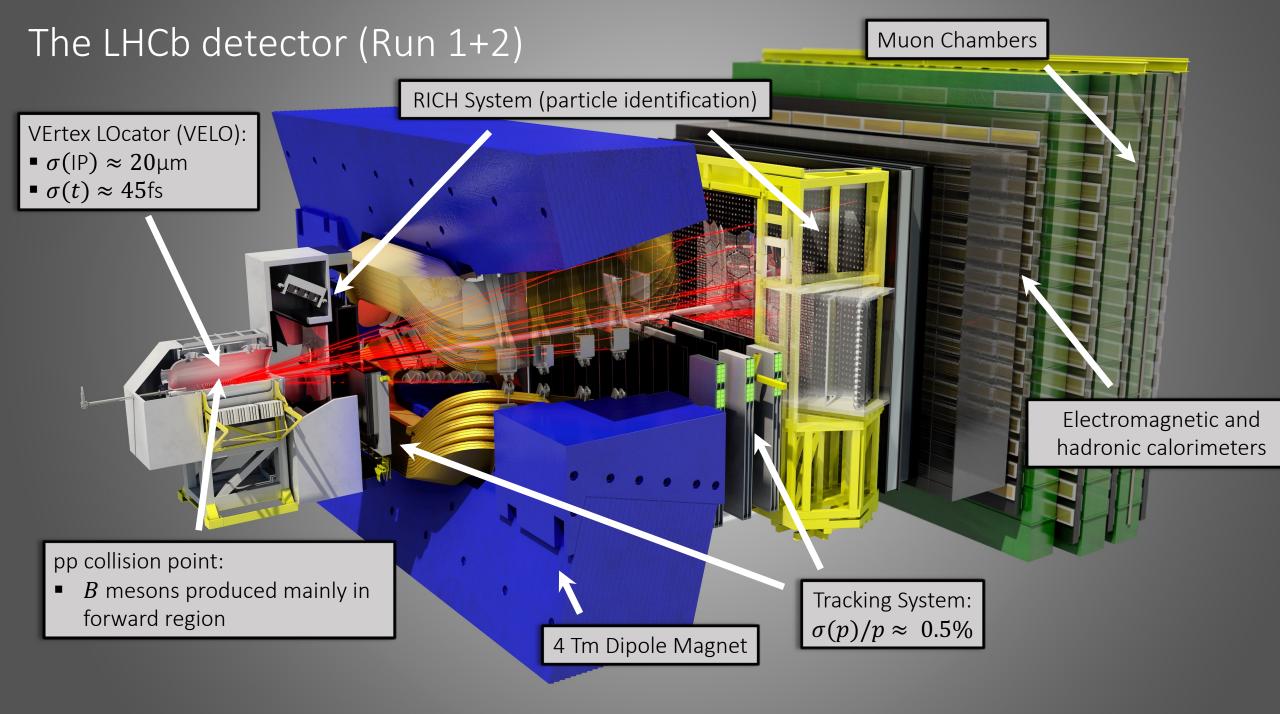
Decay	C ₇ ^(')	C ₉ ^(')	C ^(') 10	C ^(') S , P
$B \to X\gamma$	\times			
$B \rightarrow X l^+ l^-$	(×)	X	X	
$B_s^0 \to \mu^+ \mu^-$			×	×

Ratios of branching fractions: important tools for NP searches

• Lepton Flavour Universality (LFU) in SM implies:

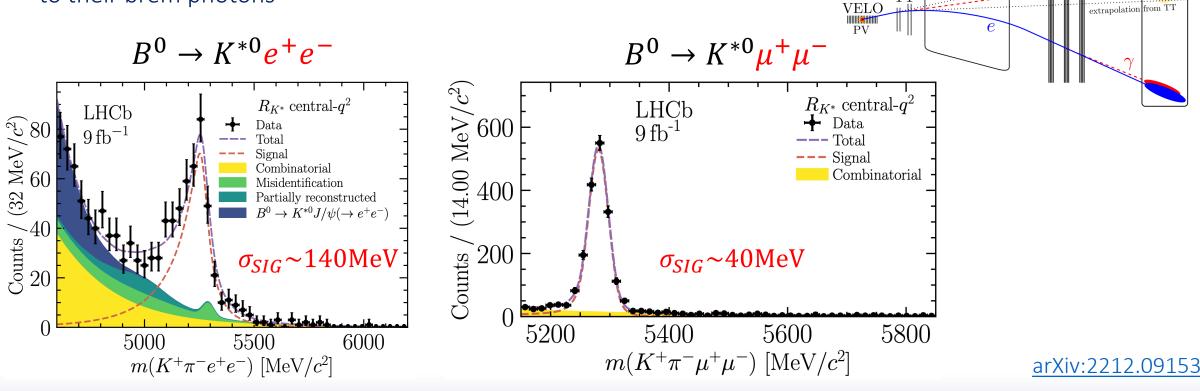

*except for (small) kinematic differences

• Hence (since $B^{+,0} \rightarrow K^{+,*0}l^+l^-$ are described by $b \rightarrow sll$ transitions), the SM predicts R_K and R_{K^*} to be equal to 1:


$$R_{K,K^*} = \frac{\int_{q_{min}^2}^{q_{max}^2} \frac{d\Gamma(B^{+,0} \to K^{+,*0}\mu^+\mu^-)}{dq^2} dq^2}{\int_{q_{min}^2}^{q_{max}^2} \frac{d\Gamma(B^{+,0} \to K^{+,*0}e^+e^-)}{dq^2} dq^2}$$

with $K^{*0} \rightarrow K^+ \pi^-$

• NP contributions can make R_{K/K^*} depart from 1



02/06/2023

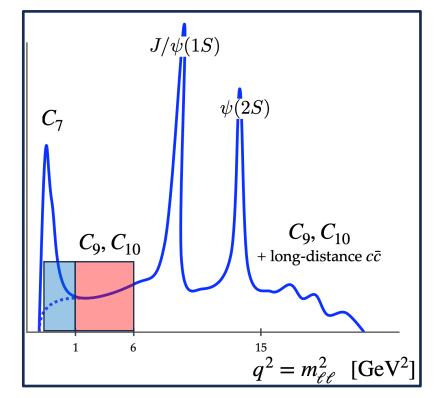
Challenge at LHCb: reconstruction of electrons

- Electrons emit radiation when interacting with the detector: *bremsstrahlung*
- The measurement of $\vec{p}(e^{\pm})$ is particularly deteriorated by the emission of brem photons before the magnet.
- A *bremsstrahlung photon recovery algorithm* is used to associate electrons to their brem photons

ECAL

T1-T3

magnetic field


Recent results of R_K and R_{K^*} : the R_X analysis

• Measure R_K and R_{K^*} with full Run 1+2 LHCb data (2011-2018, 9fb⁻¹):

$$R_{K/K^*} = \frac{\frac{N}{\varepsilon}(B^{+,0} \to K^{+,*0}\mu^+\mu^-)}{\frac{N}{\varepsilon}(B^{+,0} \to K^{+,*0}e^+e^-)} \times \frac{\frac{N}{\varepsilon}(B^{+,0} \to K^{+,*0}J/\psi(\to \mu^+\mu^-))}{\frac{N}{\varepsilon}(B^{+,0} \to K^{+,*0}J/\psi(\to e^+e^-))}$$

$$\frac{N}{\varepsilon}$$
: efficiency-corrected yield

- The high-statistics J/ψ resonance allows to cancel out most systematic effects due to e/μ differences
- Yields obtained from mass fits
- Efficiencies obtained from simulation corrected via data-driven techniques
- Analysis in *low-q*² ($q^2 \in [0.1,1]$ GeV²) and *central-q*² ($q^2 \in [1,6]$ GeV²)
- Two important cross-checks shown to be compatible with 1:

$$r_{J/\psi} = \frac{\frac{N}{\varepsilon} \left(B^{+,0} \to K^{+,*0} J/\psi(\to \mu^+ \mu^-) \right)}{\frac{N}{\varepsilon} \left(B^{+,0} \to K^{+,*0} J/\psi(\to e^+ e^-) \right)} \qquad \qquad R_{\psi(2S)} = \frac{\frac{N}{\varepsilon} \left(B^{+,0} \to K^{+,*0} \psi(2S)(\to \mu^+ \mu^-) \right)}{\frac{N}{\varepsilon} \left(B^{+,0} \to K^{+,*0} J/\psi(\to e^+ e^-) \right)} \times \frac{\frac{N}{\varepsilon} \left(B^{+,0} \to K^{+,*0} J/\psi(\to \mu^+ \mu^-) \right)}{\frac{N}{\varepsilon} \left(B^{+,0} \to K^{+,*0} J/\psi(\to e^+ e^-) \right)}$$

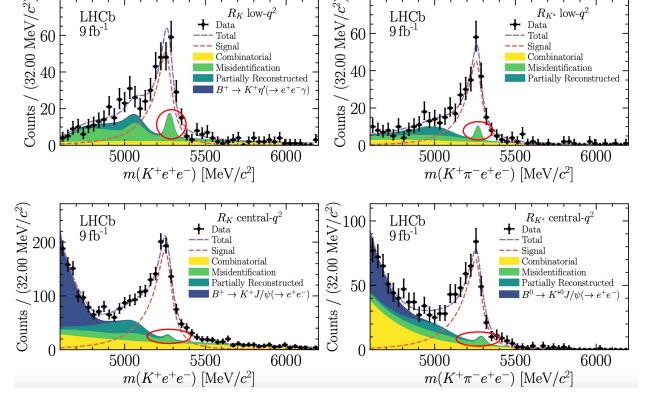
= 1

Recent results of R_{K} and $R_{K^{*}}$: results

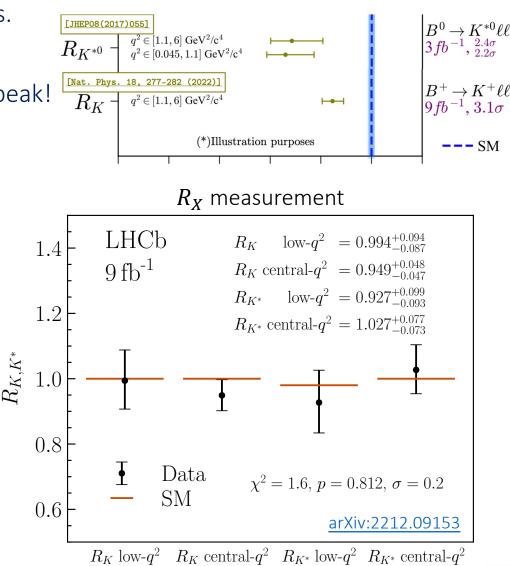
Previous measurements indicated discrepencies from SM predictions.

 R_K low- q^2

Partially Reconstructed


Data

• R_X : extensive studies of hadronic misidentified background (bkg) components in the electron mode, which can hide below the signal peak!


 $\begin{array}{c} (32.00 \ \mathrm{MeV}/c^2) \\ 0 \\ 0 \\ 0 \end{array}$

LHCb

 $9\,\mathrm{fb}^{-1}$

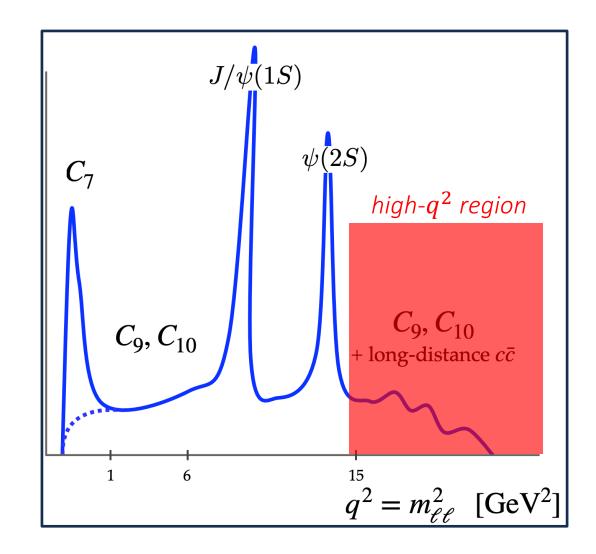
• When considering these bkg, R_{K} and $R_{K^{*}}$ are compatible with 1

Previous measurements

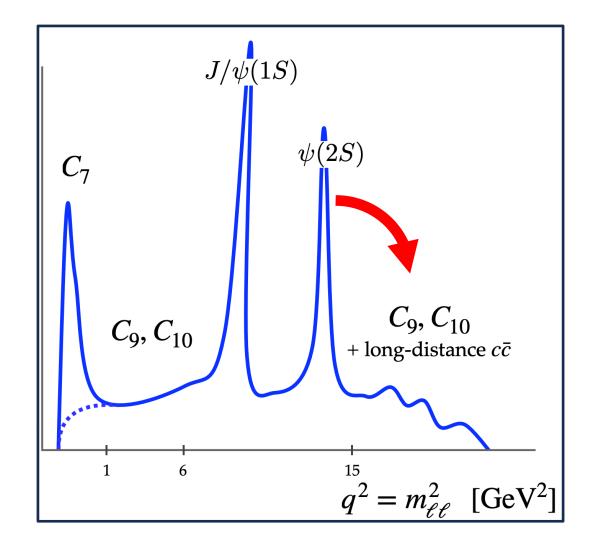
02/06/2023

m LHCb 9 fb⁻¹

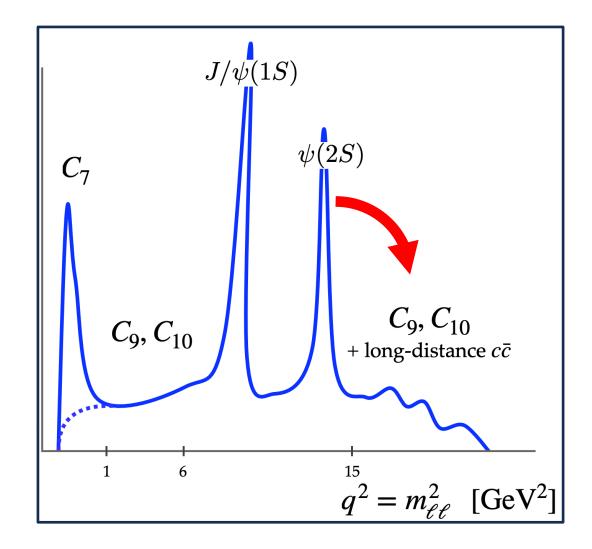
40


 R_{K^*} low- q^2

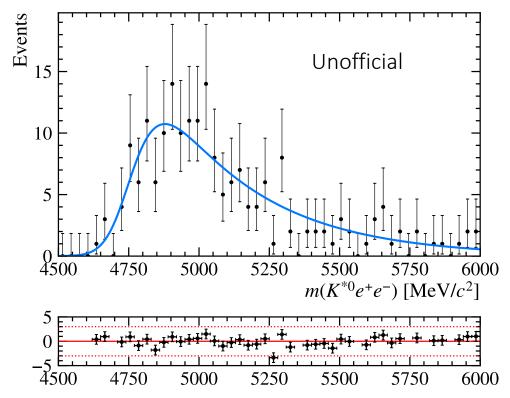
Combinatorial


Partially Reconstructed

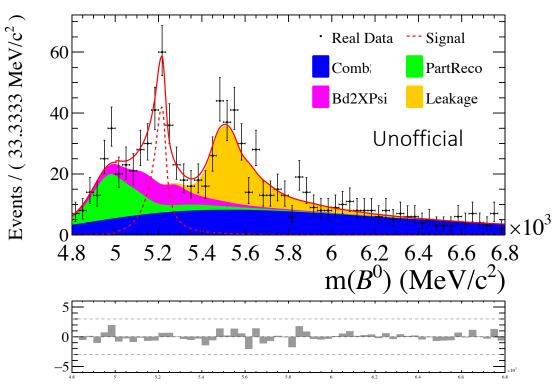
Data


- Still no measurement of R_{K^*} above the $c\bar{c}$ resonances (*high-q*² region)
- Analysis performed using the framework and knowledge of the R_X analysis

- Still no measurement of R_{K^*} above the $c\bar{c}$ resonances (*high-q*² region)
- Challenging electronic backgrounds at $high-q^2$:
 - **1.** $B^0 \to K^{*0}\psi(2S)(\to e^+e^-)$: an unrelated photon is sometimes considered as *bremsstrahlung* photon $\to q^2$ is increased and makes $B^0 \to K^{*0}\psi(2S)$ leak to high- q^2 .

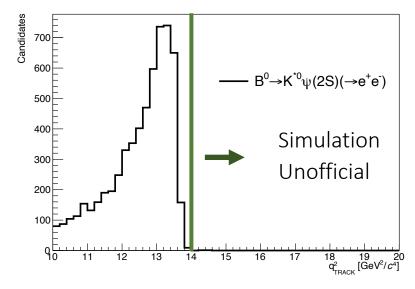


- Still no measurement of R_{K^*} above the $c\bar{c}$ resonances (*high-q*² region)
- Challenging electronic backgrounds at $high-q^2$:
 - 1. $B^0 \to K^{*0}\psi(2S)(\to e^+e^-)$: an unrelated photon is sometimes considered as *bremsstrahlung* photon $\to q^2$ is increased and makes $B^0 \to K^{*0}\psi(2S)$ leak to high- q^2 .
 - 2. $B \rightarrow X(\rightarrow YK^{*0})\psi(2S)(\rightarrow e^+e^-)$, where Y is lost. Same logic as for $B^0 \rightarrow K^{*0}\psi(2S)$ but the missing energy can make it peak below the signal peak (dangerous!)

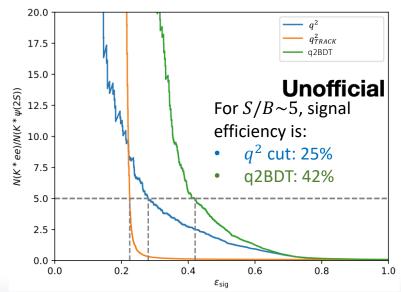

- Still no measurement of R_{K^*} above the $c\bar{c}$ resonances (*high-q*² region)
- Challenging electronic backgrounds at $high-q^2$:
 - 1. $B^0 \to K^{*0}\psi(2S)(\to e^+e^-)$: an unrelated photon is sometimes considered as *bremsstrahlung* photon $\to q^2$ is increased and makes $B^0 \to K^{*0}\psi(2S)$ leak to high- q^2 .
 - 2. $B \rightarrow X(\rightarrow YK^{*0})\psi(2S)(\rightarrow e^+e^-)$, where Y is lost. Same logic as for $B^0 \rightarrow K^{*0}\psi(2S)$ but the missing energy can make it peak below the signal peak (dangerous!)
 - 3. Combinatorial background: does not follow an usual exponential shape because of the kinematic limit at high q^2 values. A Boosted Decision Tree (BDT) is used to reduce this bkg.

- Still no measurement of R_{K^*} above the $c\bar{c}$ resonances (*high-q*² region)
- Challenging electronic backgrounds at $high-q^2$:
 - **1.** $B^0 \to K^{*0}\psi(2S)(\to e^+e^-)$: an unrelated photon is sometimes considered as *bremsstrahlung* photon $\to q^2$ is increased and makes $B^0 \to K^{*0}\psi(2S)$ leak to high- q^2 .
 - 2. $B \rightarrow X(\rightarrow YK^{*0})\psi(2S)(\rightarrow e^+e^-)$, where Y is lost. Same logic as for $B^0 \rightarrow K^{*0}\psi(2S)$ but the missing energy can make it peak below the signal peak (dangerous!)
 - 3. Combinatorial background: does not follow an usual exponential shape \rightarrow sculpted because of high q^2 values. A Boosted Decision Tree (BDT) is used to reduce it.

Distribution of $m(K^+\pi^-e^+e^-)$ from pseudoexperiments, representative of 2017-2018 data


Reducing the nasty $\psi(2S)$ backgrounds

- <u>Method 1</u>: cut on q^2 calculated with no *bremsstrahlung* correction (called q^2_{TRACK})
 - Removes all $\psi(2S)$ pollution 👍
 - Reduces quite a bit of signal 👎
- <u>Method 2</u>: Create a BDT (called q2BDT) designed to reduce $\psi(2S)$ pollution while keeping a good fraction of the signal. The BDT is trained with only 3 variables:


1.
$$q^2$$

 $2. \quad q_{TRACK}^2$

- 3. Number of bremsstrahlung photons
- Method 2 is still challenging because it still requires a very precise modelling of the $\psi(2S)$ pollution \rightarrow good trust in simulation!
- Studying actively which method to use for the final analysis!

 q^2 calculated with no bremsstrahlung correction $[{\rm GeV}^2/c^4]$

Electronic mass fits in the J/ψ and $\psi(2S)$ region

- Just like $\psi(2S)$ polutes the high- q^2 region, J/ψ polutes the $\psi(2S)$ region!
- We rescale the q2BDT so that it can be used in the $\psi(2S)$ fit C_9, C_{10} C_9, C_{10} + long-distance $c\bar{c}$ J/ψ fit: 91K signal J/ψ candidates $\psi(2S)$ fit: only ~50 J/ψ candidates remain! $q^2 = m_{\ell\ell}^2 \quad [\text{GeV}^2]$ Events / (14 MeV/c^2) Events / (13 MeV/c^2 Signal • Real Data Real Data 10^{4} Signal PartReco Comb PartRecoH Comb 10^{3} Bd2XPsi Lb Bs2Phi 10^{2} Bs2Phi Bs HadSwap 10^{2} Leakage HadSwap PartRecol 10 10 $\times 10^3$ ${m(B^0)}_{J/\psi}^{5.8}$ (MeV/c²) ${m(B^0)}_{J/\psi}^{0.2}$ 4.8 5 5.2 5.4 5.2 $5.6 \\ m(B^0)^{\text{DTF}}_{\text{w(2S)}}$ 5 5.4
- Similarly, the obtained $\psi(2S)$ yields are used to estimate how many leak at high- q^2

02/06/2023

Guillaume Pietrzyk

 $J/\psi(1S)$

 C_7

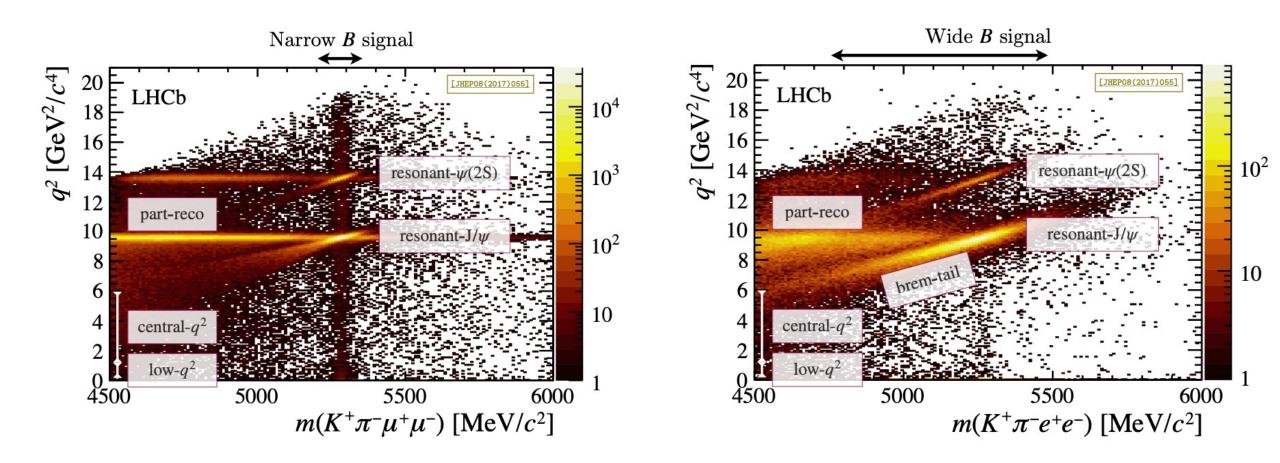
 $\psi(2S)$

Conclusion

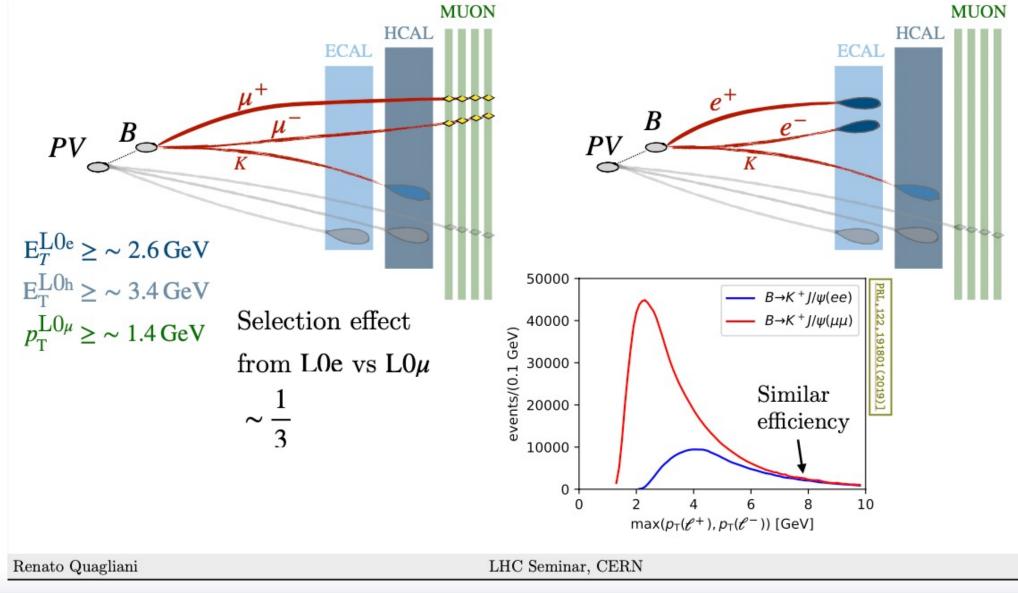
Done

- Simulation corrections
- Efficiencies calculations
- Fits to control *cc* channels
- Modelisation of most of the background components

Under study

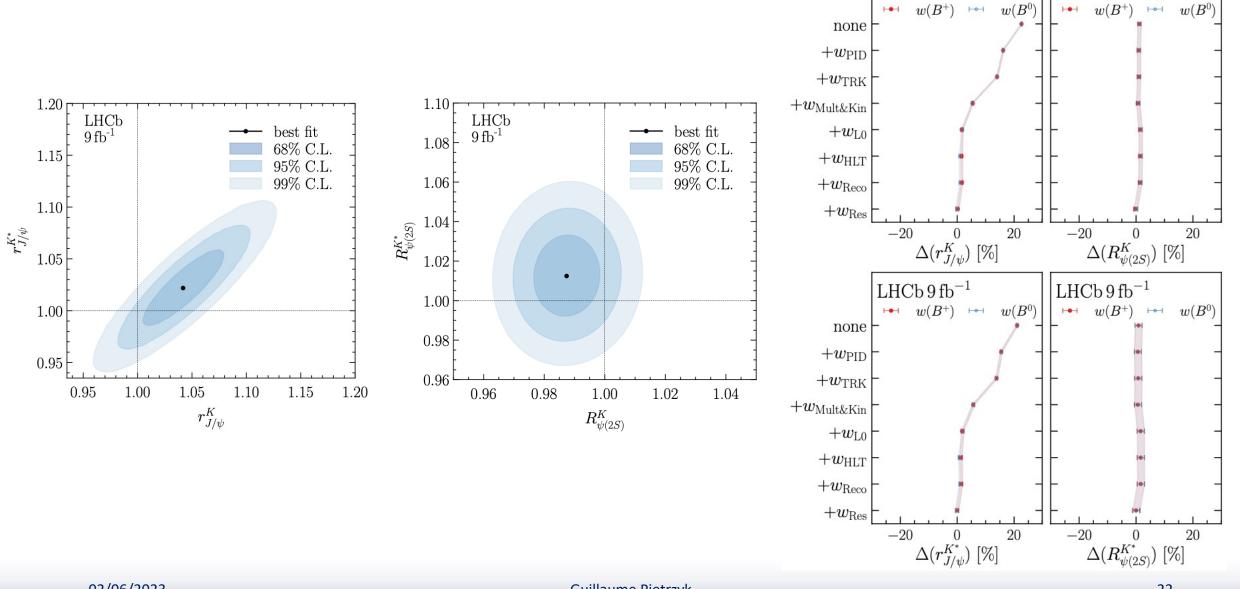

- Final decision on best strategy to reduce the $\psi(2S)$ backgrounds
- Modelisation of hadronic misidentified background

To be done


- Validate measurements of $r_{I/\psi}$ and $R_{\psi(2S)}$
- Model the muonic high- q^2 region
- Compute systematic uncertainties
- Challenging electronic bkg make this analysis complicated
- The measurement of R_{K^*} at high- q^2 will be an important addition LFU tests

BACKUP

Comparison of $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0 \to K^{*0} e^+ e^-$



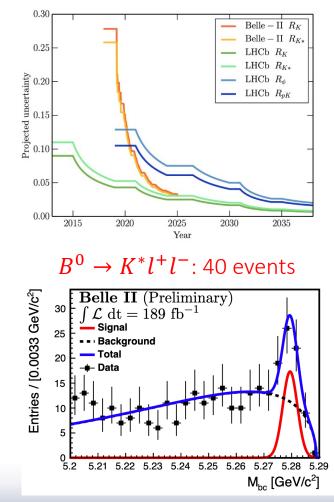
Hardware trigger: major differences in efficiency differences

Guillaume Pietrzyk

RX: measurements of $r_{J/\psi}$ and $R_{\psi(2S)}$

 $\rm LHCb\,9\,fb^{-1}$

 $\rm LHCb\,9\,fb^{-1}$


Comparison of Belle II with LHCb

- Belle II experiment: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
- Complementarity with LHCb: excellent reconstruction of neutral particles

Observables	Belle	Belle II	Belle II
	$0.71 \mathrm{~ab}^{-1}$	5 ab^{-1}	$50 \mathrm{ab}^{-1}$
$\overline{R_K ([1.0, 6.0] \mathrm{GeV}^2)}$	28%	11%	3.6%
$R_K (> 14.4 {\rm GeV}^2)$	30%	12%	3.6%
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%
$R_{K^*} (> 14.4 {\rm GeV}^2)$	24%	9.2%	2.8%

The Belle II Physics Book [PTEP 2019 (2019) 12, 123C01]

- 2022: Belle II sample ~0.5× Belle.
- Very similar distributions for $B^0 \to K^* \mu^+ \mu^-$ and $B^0 \to K^* e^+ e^-$

