

New Physics from Oscillations at the DUNE Near Detector

In collaboration with P. Coloma, J. López-Pavón & S. Urrea, based on JHEP 08 (2021) 065

Salvador Rosauro-Alcaraz 02/06/2023

This project has received funding /support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska -Curie grant agreement No 860881-HIDDeN

Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

Introduction Standard neutrino oscillations What we know (at 1σ)

I. Esteban et al. 2007.14792 www.nu-fit.org

Solar sector
$$\begin{cases} \sin^2 \theta_{12} = 0.304^{+0.012}_{-0.012} \\ \Delta m_{21}^2 = 7.42^{+0.21}_{-0.20} \cdot 10 \\ \sin^2 \theta_{23} = 0.573^{+0.016}_{-0.020} \\ |\Delta m_{31}^2| = 2.517^{+0.026}_{-0.028} \end{cases}$$

$$\sin^2 \theta_{13} = 0.02219^{+0.00062}_{-0.00063}$$

 $\frac{26}{28} \cdot 10^{-3} eV^2$

Introduction **Standard neutrino oscillations** What we know (at 1σ)

What we do not know (yet)

Is there leptonic CP violation, i.e., $\delta \neq 0, \pi$?

Introduction **Standard neutrino oscillations**

What we do not know (yet)

Is there leptonic CP violation, i.e., $\delta \neq 0, \pi$?

Mass ordering:
$$sign(\Delta m_3^2)$$

Octant of
$$\theta_{23}$$

Introduction **Future facilities**

DUNE & T2HK

DUNE Collaboration, arXiv:2006.16043 T2HK Collaboration, arXiv:1412.4673

Sanford Underground

What we do not know (yet)

Is there leptonic CP violation, i.e., $\delta \neq 0, \pi$?

Mass ordering:
$$sign(\Delta m_3^2)$$

Octant of
$$\theta_{23}$$

Recipe for good measurements

$\vec{\sigma}_{FD}$ correlated with $\vec{\sigma}_{ND}$

Measure events in ND, $N_{\mu}^{ND}(\vec{\sigma}_{ND})$

2 Measure events in FD, $N_e^{FD}(\vec{\theta}, \vec{\sigma}_{FD})$

3 Find ratio $R_{e\mu} = \frac{N_e^{FD}}{N_{\mu}^{ND}}$

Extract θ from comparing it with the extrapolation of N_{μ}^{ND}

Recipe for good measurements

Measure events in ND, $N_{u}^{ND}(\vec{\sigma}_{ND})$

2 Measure events in FD, $N_e^{FD}(\vec{\theta}, \vec{\sigma}_{FD})$

3 Find ratio $R_{e\mu}$

 $\frac{N_e^-}{N_{\mu}^{ND}}$

Extract θ from comparing it with the extrapolation of $N_{\prime\prime}^{ND}$

Need right-handed neutrinos to explain light neutrino masses

 $\nu_{\alpha} = \sum_{i}^{3+N_{s}} \mathscr{U}_{\alpha i} n_{i} \qquad \qquad \mathscr{U} = \begin{pmatrix} N & \Theta \\ R & S \end{pmatrix}$

Need right-handed neutrinos to explain light neutrino masses

 $\nu_{\alpha} = \sum_{i=1}^{3} N_{\alpha i} n_{i} + \sum_{i=4}^{N_{s}} \Theta_{\alpha i} n_{i} \qquad \mathcal{U} = \begin{pmatrix} N & \Theta \\ R & S \end{pmatrix}$

N = (I - T)U

Need right-handed neutrinos to explain light neutrino masses

$$\nu_{\alpha} = \sum_{i=1}^{3} N_{\alpha i} n_i + \sum_{i=4}^{N_s} \Theta_{\alpha i} n_i$$

Two regimes for non-unitarity:

- *n_i* not produced in neutrino oscillation experiments
- *n_i* participating in neutrino oscillations

Need right-handed neutrinos to explain light neutrino masses

Two regimes for non-unitarity:

 n_i participating in neutrino oscillations

Need right-handed neutrinos to explain light neutrino masses

 $\nu_{\alpha} = \sum N_{\alpha i} n_i + \sum$ $\Theta_{\alpha i} n_i$ i=4i=1

Two regimes for non-unitarity:

• n_i not produced in neutrino oscillation experiments

Study effects at ND

Physics at a ND Sterile neutrino oscillations

Physics at a ND **Sterile neutrino oscillations**

$$P_{\gamma\beta} = \sin^2 2\theta_{\gamma\beta} \sin^2 \left(\frac{\Delta m_{41}^2}{4E} \right)$$

LSND Collaboration, arXiv: hep-ex/0104049

 $\frac{m_{41}^2 L}{4E} \bigg), \ \sin^2 \theta_{\gamma\beta} \equiv 4 \bigg| \mathscr{U}_{\gamma4} \bigg|^2 \bigg| \mathscr{U}_{\beta4} \bigg|^2$

MiniBooNE Collaboration, arXiv:1805.12028

Physics at a ND Non-unitarity from low-scale physics

$$P_{\gamma\beta} = \sin^2 2\theta_{\gamma\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right), \ \sin^2 \theta_{\gamma\beta} \equiv 4 \left|\mathcal{U}_{\gamma4}\right|^2 \left|\mathcal{U}_{\beta4}\right|^2$$

Averaged-out regime $\Delta m_{41}^2 L/E \gg 1$

 $P_{\gamma\beta} = 2 \left| \alpha_{\gamma\beta} \right|^2 = 2 \left| \mathcal{U}_{\gamma4} \right|^2 \left| \mathcal{U}_{\beta4} \right|^2$

Similar to NU at high scales

Physics at a ND **Non-standard neutrino interactions**

General 4-fermion effective operator $\mathscr{L}_{NSI} = -2\sqrt{2}G_F \epsilon_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma^{\mu}P_{L(R)}f\right)$

Used to "reconcile" NOvA and T2K results

P. Denton, J, Gherlein & R. Pestes, arXiv: 2008.01110 S. Chartterjee & A. Palazzo, arXiv: 2008.04161

Physics at a ND **Non-standard neutrino interactions**

$$P_{\gamma\beta} = \left| \epsilon^{d}_{\gamma\beta} \right|^{2} + \left| \epsilon^{s}_{\gamma\beta} \right|^{2}$$

General 4-fermion effective operator $\mathscr{L}_{NSI} = -2\sqrt{2}G_F \epsilon_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma^{\mu}P_{L(R)}f\right)$

 $+2\left|\epsilon_{\gamma\beta}^{d}\right|\left|\epsilon_{\gamma\beta}^{s}\right|\cos\left(\Delta\Phi_{\gamma\beta}\right)$

Physics at a ND **Non-standard neutrino interactions**

$$P_{\gamma\beta} = \left| \epsilon_{\gamma\beta}^{d} \right|^{2} + \left| \epsilon_{\gamma\beta}^{s} \right|^{2}$$

Averaged-out regime $\Delta m_{41}^2 L/E \gg 1$

General 4-fermion effective operator $\mathscr{L}_{NSI} = -2\sqrt{2}G_F \epsilon_{\alpha\beta} \left(\bar{\nu}_{\alpha} \gamma_{\mu} P_L \nu_{\beta} \right) \left(\bar{f} \gamma^{\mu} P_{L(R)} f \right)$

+ 2 $\left| \epsilon_{\gamma\beta}^{d} \right| \left| \epsilon_{\gamma\beta}^{s} \right| \cos \left(\Delta \Phi_{\gamma\beta} \right)$

Translate bounds from $\alpha_{\gamma\beta}$ to $\epsilon_{\gamma\beta}$

Simulation details DUNE flux & detector simulation

ResultsSterile oscillations

ResultsSterile oscillations

LSND & MiniBooNE preferred region @ 99% CL

MicroBooNE @ 95% CL

 $\Delta m^2_{41} (\mathrm{eV}^2)$

MicroBooNE, arXiv: 2210.10216

Conclusions

Near detectors can be useful to study physics beyond 3ν oscillations

Systematic uncertainties play a crucial role

Conclusions

- Near detectors can be useful to study physics beyond 3ν oscillations
 - Systematic uncertainties play a crucial role
 - Study ν_{τ} appearance in DUNE

Conclusions

- Near detectors can be useful to study physics beyond 3ν oscillations
 - Systematic uncertainties play a crucial role
 - Study ν_{τ} appearance in DUNE
- 2% shape uncertainties:
- Reduce considerably the sensitivity to $\nu_{\mu} \rightarrow \nu_{e}$ around 2 orders of magnitude
- Reduce bound on NU parameters about a factor 2

Back-up slides

Simulation details ν_{τ} detection

Produce τ through CC interactions Consider only τ hadronic decay ($BR(\tau \rightarrow had) \sim 65\%$) Main background due to NC

PDG, P. A. Zayla *et al.*, PTEP 2020 GENIE Collaboration, J. Tena-Vidal et al., arXiv:2104.09179 A. de Gouvêa et al., arXiv:1904.07265

Simulation details Systematic uncertainties

Event sample	Contribution	Benchmark 1		Benchmark 2		Benchmark 3	
		σ_{norm}	σ_{shape}	σ_{norm} .	σ_{shape}	σ_{norm}	σ_{shape}
$ u_e$ -like	Signal	5%		5%	-	5%	
	Intrinsic cont.	10%	_	10%	2%	10%	5%
	Flavor mis-ID	5%	_	5%	2%	5%	5%
	\mathbf{NC}	10%	_	10%	2%	10%	5%
$ u_{\mu}$ -like	$ \nu_{\mu}, \bar{\nu}_{\mu} { m CC} ({ m signal}) $	10%		10%	2%	10%	5%
	\mathbf{NC}	10%	-	10%	2%	10%	5%
$ u_{ au}$ -like	Signal	20%	-	20%	-	20%	
	\mathbf{NC}	10%	—	10%	2%	10%	5%

Allows every bin to vary independently

Results Non-standard neutrino interactions

$$P_{\gamma\beta} = \left| \epsilon_{\gamma\beta}^{d} \right|^{2} + \left| \epsilon_{\gamma\beta}^{s} \right|^{2} + 2 \left| \epsilon_{\gamma\beta}^{d} \right| \left| \epsilon_{\gamma\beta}^{s} \right| \cos \left(\Delta \Phi_{\gamma\beta} \right)$$

Results

