
Radiative leptonic decays of pseudoscalar mesons from
lattice QCD

Giuseppe Gagliardi, INFN Sezione di Roma Tre

In collaboration with:
R. Frezzotti, V. Lubicz, G. Martinelli, F. Mazzetti, C.T. Sachrajda,

F. Sanfilippo, S. Simula, N. Tantalo
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The P → ℓ νγ decays

Feynman diagrams (all orders in QCD implicitly included): [P = fγ5f ′]

• Diagram (b) can be computed in perturbation theory: the only lattice
input required is the meson decay constant fP [⟨0|Aµ(0)|P (p)⟩ ≡ ipµfP ].

• Diagram (a) can be reliably computed in a point-like approximation for
the meson P only in the limit of soft-photon emission.

• We neglect the SU(3)−vanishing diagram with photon emitted from
sea-quarks.
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Phenomenological relevance

Radiative leptonic decays P → ℓνγ are interesting!

• Important probes of the internal structure of pseudoscalar meson P .

• They allow for an independent extraction of |VCKM| w.r.t. purely leptonic
channels. Also relevant for VCKM at O(αem) from P → ℓν[γ].

• For heavy mesons (Ds, D, B, . . .), no model-independent results for the
rate are available.

• The point-like contribution to the decay rate for P → ℓνγ is (helicity)
suppressed w.r.t. SD contribution by a factor r2

ℓ = (mℓ/mP )2

• =⇒ for heavy-meson decays, the electron mode is very sensitive to
Structure-Dependent contributions.

• E.g. : for P = Ds and ℓ = e, r2
e ≃ 6 × 10−8.
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Experimental results for P → ℓνγ

For light-meson decays many accurate results available

• π → eνeγ [PIBETA arXiv:0804.1815]

• K → eνeγ [KLOE arXiv:0907.3594]

• K → µνµγ [E787 arXiv:0003019, ISTRA+ arXiv:1005.3517, . . . ]

For heavy-mesons little is known, only upper-bounds available

• Br[D → eνeγ](Eγ > 10 MeV) < 3 × 10−5 [BESIII arXiv:1702.05837]

• Br[Ds → eνeγ](Eγ > 10 MeV) < 1.3 × 10−4 [BESIII arXiv:1902.03351]

• Br[B → eνeγ](Eγ > 1 GeV) < 4.3 × 10−6 [Belle arXiv:1810.12976]

• Br[B → µνµγ](Eγ > 1 GeV) < 3.4 × 10−6 [Belle arXiv:1810.12976]

Providing a first-principle determination of the branching fractions
for heavy mesons may encourage further experimental searches! 3



Computing P → ℓνγ on the lattice

We need to compute the weak matrix element (JW = JV − JA):

⟨γ(k, ϵ)|Jν
W |P (p)⟩ ≃ −ie

∫
d4y ⟨γ(k, ϵ)|Aµ(y)|0⟩ × T⟨0|Jµ

em(y)Jν
W (0)|P (p)⟩QCD

= −ieε∗µ ×
∫

d4y eiky T⟨0|Jµ
em(y)Jν

W (0)|P (p)⟩QCD

All non-perturbative information encoded in the hadronic tensor

Hµν
W (k, p) ≡ i

∫
d4y eiky T⟨0|Jν

W (0)Jµ
em(y)|P (p)⟩

• . . .which for each pseudoscalar meson P must be computed for
different photon energies Eγ ≡ k0 = |k|.

This is done by means of LATTICE QCD simulations
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Basics of LQCD

The theoretical framework for lattice calculations is QFT in Euclidean time
(obtained through Wick-rotation t → −iτ)

⟨ϕ(x1)ϕ(x2) . . . ϕ(xn)⟩ = 1
Z

∫
[dϕ] ϕ(x1)ϕ(x2) . . . ϕ(xn) exp(−SE [ϕ])

The infinite-dimensional path integral is discretized on a 4-dimensional grid
(the lattice) : xµ → nµa, which provides an UV (1/a) and IR (1/L) cut-off.

• We evaluate lattice path integral using MC methods.

• In QCD generate a stream of gauge configurations
{U1, . . . , UN } distributed according to e−SE [U ],
then. . .

⟨Ō⟩ = 1
N

N∑
i=1

O[Ui] =⇒ σŌ ∝ 1√
N

• Repeat the calculation for different L and lattice
spacings a and extrapolate to a, 1/L → ∞. 5



Generating gauge configurations

Generating state-of-the-art gauge-field configurations is an extremely expensive
task, which requires massive HPC resources.

GPU-cluster Marconi100 at CINECA, Bologna.
It will cease its activities at the end of June. . .

. . . but will be ”replaced” by LEONARDO,
the 4th fastest supercomputer in the world.

• Within the LQCD community, it is
customary for researchers to form
collaborations where gauge
configurations are produced and then
shared among the members.

• Each collaboration has its own
favoured lattice discretization:
Wilson-clover, Twisted-mass,
Staggered, Domain Wall, Overlap...

• =⇒ Important for checks of
universality.

I am a member of the Extended Twisted-Mass Collaboration (ETMC), which has
recently produced a ”luxury” set of gauge configurations, corresponding to (four)
lattice spacings a ∈ [0.058, 0.09] fm, spatial volumes L3 up to L ≃ 7.7 fm and

Nf = 2 + 1 + 1 physical flavours. Let’s do some physics with them!! 6



And back to physics. . .

Hµν
W (k, p) = i

∫
d4y eik·y T ⟨0

∣∣Jν
W (0)Jµ

em(y)
∣∣P (p)⟩

Using Lorentz invariance, Hµν
W decomposed in terms of scalar form factors:

Hµν
W (k, p) = i

FV

mP
ϵµνβγkγpβ +

[
FA

mP
+ fP

p · k

]
(p · k gµν − pµkν)

+ fP

p · k
pµpν︸ ︷︷ ︸

point-like contribution

+ Hµν
⊥ (k, p)

• FA and FV functions of the invariant xγ = 2p·k
m2

P

, 0 ≤ xγ ≤ 1 − m2
ℓ

m2
P

.

• Point-like contribution proportional to P −meson decay constant fP .

• Hµν
⊥ term depends on two additional form factors H1 and H2, but does

not contribute to the real photon emission process. 7



Canonical decomposition of Hµν
W

Hµν
W (k, 0) = i

∫ 0

−∞
dty eiEγ ty ⟨0

∣∣Jν
W (0)Jµ

em(ty, k)
∣∣P (0)⟩

+ i

∫ ∞

0
dty eiEγ ty ⟨0

∣∣Jµ
em(ty, k)Jν

W (0)
∣∣P (0)⟩ ≡ Hµν

W,1(k, 0) + Hµν
W,2(k, 0)

In the two time-orderings insert 1 =
∑

n
|n⟩ 1

2En
⟨n| between the two currents

and perform ty-integral

1st T.O. ty < 0

Hµν
W,1(k, 0) =

∑
n

Bµν;n
W (k)

En(−k) + Eγ − mP − iϵ

2nd T.O. ty > 0

Hµν
W,2(k, 0) =

∑
n

Aµν;n
W (k)

En(k) − Eγ − iϵ

For real photon emission (Eγ = |k|) always a positive mass gap =⇒ no
problems of analytic continuation from Minkowskian to Euclidean time. 8



Real photon on the lattice

Extracting the form factors from Euclidean lattice correlators

• We work in the meson rest frame p = 0, and compute the Euclidean VEV

Cµν
W (t, Eγ) =

∫
d4y etyEγ e−ik·y⟨0|T {Jν

W (t)Jµ
em(y)} ϕ†

P (0)|0⟩ , k = Eγ ẑ

• ϕ†
P (0) is an interpolating operator for JP = 0− hadronic states with

p = 0, and same flavour content as the P meson.

• In the large (Euclidean) time limit t:

Rµν
W (t, Eγ) ≡ 2mP

⟨0|ϕP |P ⟩et(E−Eγ )︸ ︷︷ ︸
amputating external states

× Cµν
W (t, Eγ) → Hµν

W (k, 0)

• Simple estimators can be built to
extract the form factors:

R11
A (t, Eγ) − R11

A (t, 0) ∝
t≫a

FA(Eγ)

R12
V (t, Eγ) ∝

t≫a
FV (Eγ)

• We analyzed the case P = Ds.

• Simulated ten different values of
xγ ≡ 2Eγ/MP ≃ 0.1, 0.2, . . . , 1
using twisted b.c. [C.T. Sachrajda, G.
Villadoro Phys.Lett.B 609].
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Extracting FV and FA

Example of extraction, on a selected gauge ensemble, of FA and FV from the
large-time behavior of the estimators R̄V/A(t) ∝ RV/A(t)

Ensemble parameters: a ≃ 0.08 fm, L ≃ 5 fm, T = 2L (temporal lattice
extent). 10



Finite-volume effects and continuum-limit extrapolation

Finite-volume
effects controlled
by simulating on
L ≃ 5 fm (B64)
and L ≃ 7.7 fm

(B96) boxes.
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Final results and comparison with previous calculations
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• ⇐= Single-flavour contributions
(photon emitted from strange or
charm quark-line).

• FV/A ≡ F
(s)
V/A

+ F
(c)
V/A

.

• Strong cancellation between strange-
and charm-quark contributions to
vector form factor FV [Firstly observed

by R. Zwicky].
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From the form factors to the decay rate

The photon-energy differential decay rate for Ds → ℓνγ is written as a sum of
three contributions

dΓ(Ds → ℓνγ)
dxγ

= αem

4π
Γ(0)

{
dRpt

dxγ
+ dRint

dxγ︸ ︷︷ ︸
∝FA,FV

+ dRSD

dxγ︸ ︷︷ ︸
∝F 2

A
,F 2

V

}

• Γ0 is leptonic decay rate without QED

Γ(0) =
G2

F |Vcs|2f2
Ds

8π
m3

Ds
r2

ℓ (1 − r2
ℓ )2, rℓ = mℓ/mDs

• At small xγ :
dRpt

dxγ
∝ x−1

γ ,
dRint

dxγ
∝ xγ ,

dRSD

dxγ
∝ x3

γ

• But. . . RSD ∝ r−2
ℓ =⇒ structure-dependent (SD) contribution enhanced

by lepton/meson squared mass ratio.

For sufficiently large xγ and small rℓ the SD contribution is the dominant.
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The differential branching fraction

The most interesting decay-channel to probe the internal structure of Ds

meson is Ds → eνeγ [r2
e ≃ 6 × 10−8]
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• The pt contribution to the differential branching is suppressed w.r.t. SD
one for xγ ≳ 0.06. SD contribution maximum at xγ ≃ 0.6 − 0.7.

• The total decay rate

Γe(∆Eγ) ≡
∫ 1−r2

e

2∆Eγ
mDs

dxγ
dΓ(Ds → eνeγ)

dxγ

turns out to be dominated by SD contribution for photon-energy cuts
∆Eγ as low as 10 MeV. 14



The branching Γe(∆Eγ)
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• BESIII has recently ”measured” the branching fraction for Ds → eνeγ

employing a lower-cut ∆Eγ = 10 MeV finding

Br[Ds → eνeγ](10 MeV) ≡
Γe(10 MeV)

Γtot
< 1.3 × 10−4 at 90% C.L.

• Quark-model and HQET+pQCD calculations predicted a branching fraction of
order 10−4 − 10−5 and 10−3 respectively.

• Our value Br[Ds → eνeγ](10 MeV) ≃ 4.4(3) × 10−6 is lower and well within
the BESIII bound. Boring, but it’s life. . . 15



Testing pole models (I)

Assuming dominance of lowest-lying hadronic-state:

FW =
1

2EW (−k)
BW

EW (−k) + Eγ − mDs

In vector and axial channel one expects

EV (−k) =
√

m2
D∗

s
+ |k|2

mD∗
s

− mDs ≃ 150 MeV

EA(−k) =
√

m2
Ds1

+ |k|2

mDs1
− mDs ≃ 500 MeV

Fitting FV and FA with a single effective-pole Ansatz having free params. BV/A and
the resonance mass we get
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Testing pole models (II)

• In the vector channel the fitted value of the lowest-lying resonance mass
compatible within 1.5σ with the D∗

s mass.

• Failure in the axial channel can be attributed to the larger gap
mDs1

− mDs ≃ 500 MeV. . .

• . . .and to the small (76 MeV) mass difference between the first- (Ds1 (2460))
and second-lightest (Ds1 (2536)) intermediate states.

• The residue BV determined in pole-fit to FV related to gD∗
s Dsγ coupling via

gD∗
s Dsγ = −

AV

mDs mD∗
s

fD∗
s

• Our determination of gD∗
s Dsγ can be compared with existing results

LCSR [*] HPQCD [**] This work

g
D∗

s Dsγ
[GeV−1] ✗ 0.60(19) 0.10(2) 0.118(13)

[*] light-cone sum rule prediction, B. Pullin & R. Zwicky JHEP 09 (2021) 023

[**] Direct lattice QCD calculation, HPQCD collaboration Phys. Rev. Lett. 112
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Conclusions on leptonic decays with real photon emission

• I hope to have conveyed the message that high-precision calculations of
P → ℓνγ decays, even when the meson P is heavy, can be nowadays
performed on the lattice.

• Such decays are important, especially for heavy mesons, where the
point-like contribution is suppressed, and the decay-rate is dominated by
Structure-Dependent contributions, which can be sensitive to NP effects.

• As a part of our program to determine FA and FV for all heavy mesons,
we considered the case P = Ds and computed the two form factors over
the whole phase space.

• Experimentally only an upper bound for Ds → eνeγ exists (BESIII), and
our predictions are well within the bound. We hope that our
high-precision calculations may trigger further experimental searches.

• For P = Ds we find disagreement with existing model-dependent
calculations (quark-model, LCSR, HQET+pQCD).
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Leptonic decays with virtual photon emission

In principle, we can evaluate the hadronic tensor [From now on I drop the p = 0]

Hµν
W (Eγ , k) = i

∫
dt eiEγ t T⟨0

∣∣Jν
W (0)Jµ

em(t, k)
∣∣P ⟩

also for off-shell photons Eγ ̸= |k|

• Through the convertion of the virtual photon γ∗ into a dilepton we can
study the rare decays

P → ℓνℓγ∗ → ℓνℓℓ̄′ℓ′

• At first sight it looks as a trivial generalization of the real-photon case.
Actually, it is not! 19



The problem of analytic continuation

The hadronic tensor Hµν(Eγ , k) is defined as the Fourier time-transform with
argument Eγ of the Minkowskian ⟨0|T

{
Jµ

em(t, k)Jν
W (0)

}
|P ⟩

On the lattice we compute everything in Euclidean time =⇒ the connection
between Euclidean and (physical) Minkowskian amplitudes has to be established
case by case, and not always possible [Maiani & Testa no-go].

In our case: Hµν
W (Eγ , k) = i

∫ 0

−∞
dt ⟨0|Jν

W (0) ei(Ĥ+Eγ −mp)t Jµ
em(0, k)|P ⟩

+ i

∫ ∞

0
dt ⟨0|Jµ

em(0, k) e−i(Ĥ−Eγ )t Jν
W (0)|P ⟩

Analytic continuation t → −it possible if all contributing eigenstates En of Ĥ satisfy:
(i) En + Eγ > mp (ii) En > Eγ

Condition (ii) not satisfied for general
Eγ . Problems when photon
offshellness k2 ≡ E2

γ − |k|2 > mass of
lightest unflavoured JP = 1− state.
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The case P = K

In arXiv:2202.03833 we evaded the problem by considering unphysical light-quark
masses such that 2Mπ > MK and the condition k2 > 4M2

π is never verified.

For K → ℓνℓℓ̄′ℓ′ we computed the differential and total rate for different
decay-channels (xk =

√
k2/MK):
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This work point-like E865 exp.
Br [K+ → e+ νe µ+ µ−]

0.762(49) × 10−8 3.0 × 10−13 1.72(45) × 10−8

Br [K+ → µ+ νµ e+ e−] for xk > 0.284
8.26(13) × 10−8 4.8 × 10−8 7.93(33) × 10−8

• Having unphysical quark-masses is
OK for semi-quantitative predictions.

• However, for accurate predictions the
analytic continuation problem must
be tackled!
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Finding the root of all evils. . .

[I drop now irrelevant indices and consider 2nd T.O. only]

Minkowskian correlator, Hadronic amplitude, Euclidean correlator (input)

C(t) ≡ ⟨0|Jem(t)JW (0)|P ⟩ , H(E) ≡ i

∫ ∞

0
dteiEtC(t) , CE(t) ≡ ⟨0|Jem(−it)JW (0)|P ⟩

Spectral density ρ(E′) defined as: ρ(E′) =
〈

0
∣∣Jem(0) δ(H − E′) JW (0)

∣∣P〉
• H is the QCD Hamiltonian. One has ([E∗, ∞) is support of ρ):

C(t) t>0=
∫ ∞

E∗
dE′ ρ(E′) e−iE′t, CE(t) t>0=

∫ ∞

E∗
dE′ ρ(E′) e−E′t

• The hadronic amplitude H(E) can be computed as

H(E) = lim
ϵ→0

i

∫ ∞

E∗
dE′ ρ(E′)

∫ ∞

0
dt e−i(E′−E−iε)t = lim

ϵ→0

∫ ∞

E∗
dE′ ρ(E′)

E′ − E − iε

If E > E∗ CANNOT set ε = 0 before integrating. Instead if E < E∗

H(E) =
∫ ∞

E∗
CE(t)eEt

22



Solving the problem through the spectral representation

We propose to use ε as a regulator and evaluate the smeared amplitude
H(E; ε) at finite ε, and then take lim ε → 0.

H(E; ε) ≡
∫ ∞

E∗
dE′ ρ(E′)

E′ − E − iε

trust me=
∫ ∞

−∞
dE′ 1

π

ε

(E′ − E)2 + ε2 H(E′)

• The regulator exactly smears the hadronic amplitude over an
energy-interval ε.

• While evaluating ρ(E′) from CE(t) (our input) is an ill-posed problem,
the convolution between ρ(E′) and (E′ − E − iε)−1 can be evaluated
with controlled errors using the recently developed HLT method [

M. Hansen et al. arXiv:1903.06476].

• Proof-of-principle calculation on a single ensemble with L ≃ 5 fm for
P = Ds where threshold E∗ ≃ Eϕ(k) ≃ 1.02 GeV with |k| ≃ 0.2 GeV.
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The smeared amplitude H(E; ε)
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For E > E∗ statistical errors increase by decreasing ε. 24



Extrapolation to vanishing ε

• The criterion for a smooth ε−converge of H(E; ε) is:
1/L ≪ ε ≪ ∆(E) (I)

• ∆(E) is the typical size of the logarithmic derivative of H(E) in E ± ε.

• E.g. if ρ(E > 0) ∝ 1
(E−M)2+Γ2 =⇒ ∆(E) =

√
(E − M)2 + Γ2.

• When (I) is satisfied H(E; ε) − H(E) is O(ε) (scaling regime).
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• Close to a sharp resonance (like
the ϕ) extremely small ε and large
volumes needed to be in the
scaling region.

• In the orange region (around the
ϕ) we extrapolated in a
model-dependent way assuming a
Breit-Wigner of Γ ≃ 5 MeV.
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Conclusions on virtual photon emissions

• We presented a new strategy to evaluate complex electroweak amplitudes
from Euclidean correlators also when intermediate states with energy
larger than that of the external states are present.

• We circumvent the problem of analytic continuation, by evaluating, via
spectral reconstruction methods, the hadronic amplitude H(E; ε) smeared
over an energy radius ε, and by then taking afterwards the ε → 0 limit.

• We performed a pilot-study on a single ETMC ensemble, computing the
hadronic tensor relevant to Ds → ℓνℓℓ̄′ℓ′ using the HLT method.

• We are ready to apply the method to kaon decays, where the ε

extrapolation will be probably smoother due to the presence of the broad
ρ-resonance in place of the sharp ϕ resonance of the Ds decays.

Thank you for your attention!
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