Angular analysis of the $B_s \rightarrow \phi e^+ e^-$ decay in the very-low q² bin to access photon polarization in LHCb

Gaelle KHREICH, Guillaume PIETRZYK, Marie-Hélène SCHUNE

Flavor day - IJCLab 2 June 2023

Electoweak Penguin Decays

 $\mathbf{b} \rightarrow \mathbf{sll}$ transitions in the SM mediated by loop.

- Highly suppressed
- NP contributions can be large.

Different $q^2 (m_{l+l-}^2)$ regions probe different processes.

The Photon Penguin

Photon Penguin can be:

- with a real photon (radiative decay)
- with a virtual photon in $b \rightarrow sll$ processes

Muons need at least $\sqrt{q^2} = 2m_{\mu}$

 \rightarrow With electrons you can go lower in q^2 and isolate the photon pole

$$H_{\rm eff} \sim (C_7 O_7 + C_7' O_7')$$

- $O_7^{(')}$: left(right)-handed EM dipole operator
- $C_7^{(\prime)}$: corresponding Wilson coefficient

 γ mostly left-handed in the SM $\rightarrow \frac{C_7'}{C_7} \approx 0.02$

The Analysis - $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)e^+e^-$

Specific aspects compared to $B^0 \to K^{*0} (\to K^+ \pi^-) e^+ e^-$:

• $B_s^0 \to \phi(\to K^+K^-)e^+e^-$ mode has lower statistics:

•
$$f_s/f_d = 1/4$$
 suppressed
• $B(\phi \to K^+K^-) = 50\%$ compared to $B(K^* \to K\pi) = 2/3$

- Narrow ϕ resonance \rightarrow lower background level.
- Lower Partially Reconstructed Backgrounds.

The Analysis - $B_s^0 \to \phi(\to K^+K^-)e^+e^-$

The direction of the four outgoing particles can be described by three angles.

 θ_l : angle between e^- and B_s^0 in the dielectron rest frame.

 θ_K : angle between $K^$ and B_s^0 in the K^-K^+ rest frame.

 ϕ : angle between the two leptons plane and the 2 kaons plane in the B_s^0 rest frame.

The Analysis - m_{ee} region

Lower Boundary In principle, can go to the threshold $m_{(ee)} = 2m_e \sim 1 \text{MeV}/c^2$

- \rightarrow Angle between leptons gets very small
 - \rightarrow Bad resolution on ϕ
 - \rightarrow Worse measurement of observables of interest
- \rightarrow Cut at 10 MeV helps removing converted γ

Upper Boundary

- \rightarrow Isolate $C_7^{(')}$
- \rightarrow Avoid background coming from higher mass.

$$\mathbf{m}_{ee} \in [10, 500] \text{ MeV}$$

1 $d^3(\Gamma + \overline{\Gamma})$ $\frac{\overline{d(\Gamma + \bar{\Gamma})}}{d\alpha^2} \,\overline{d\cos\theta_l d\cos\theta_k d\phi}$ $=\frac{9}{32\pi}\left\{\frac{3}{4}\left(1-F_{L}\right)\sin^{2}\theta_{k}+F_{L}\cos^{2}\theta_{k}\right.$ + $\left|\frac{1}{4}\left(1-F_{L}\right)\sin^{2}\theta_{k}-F_{L}\cos^{2}\theta_{k}\right|\cos 2\theta_{l}$ $+\frac{1}{2}\left(1-F_L\right)A_T^{(2)}\sin^2\theta_k\sin^2\theta_l\cos 2\phi$ $+ (1 - F_L) A_T^{ReCP} \sin^2 \theta_k \cos \theta_l$ $+\frac{1}{2}(1-F_L)A_T^{ImCP}\sin^2\theta_k\sin^2\theta_l\sin 2\phi$

 \star F_L is the longitudinal polarisation

 \star A_T^{ReCP} related to the forward-backward asymmetry

 $\star A_T^{(2)}, A_T^{ImCP}$ are sensitive to the photon polarization

•
$$A_T^{(2)}(q^2 \to 0) = \frac{2Re(C_7C_7^{**})}{|C_7|^2 + |C_7'|^2} + m_1^1$$

• $A_T^{ImCP}(q^2 \to 0) = \frac{2Im(C_7C_7^{**})}{|C_7|^2 + |C_7'|^2} + m_2$

https://arxiv.org/pdf/2210.11995.pdf

¹where m_i are contributions induced by $B_s - \bar{B_s}$ mixing

Key Observables

 A_T^{ImCP} and $A_T^{(2)}$ are our key observables:

- Sensitive to the photon polarization.
- Predicted to be small in the Standard Model.
- Can be large in the presence of New Physics contributions.

 ϕ from Signal only toys, SM predictions on the left $(A_T^{(2)} = 0.094)$ and a different value of $A_T^{(2)}$ (=0.500) on the right.

Towards the Angular Analysis

- Using Run 1 (2011 and 2012) + Run 2 (2015, 2016, 2017 and 2018) collected data corresponding to 9 fb⁻¹.
- About 100 signal candidates for $m_{ee} \in [10, 500]$ MeV

The aim of our angular analysis is to measure the four observables $F_L, A_T^{(2)}, A_T^{ReCP}$ and A_T^{ImCP} . The total 4D fit PDF is:

 $fs \times PDF_{Signal}(m, \theta_l, \theta_K, \phi) + \sum_{BKG} f_{BKG} * PDF_{BKG}(m, \theta_l, \theta_K, \phi)$

- $\bullet\,$ The signal angular PDF is multiplied by the angular acceptance extracted from PhaseSpace MC 2
- Background PDFs are extracted from MC fits.
- Fit procedure tested with pseudo-experiments.

²Generated with flat angles

Control channel fit

 $B_s^0 \to \phi \gamma$

- $m_{ee} < 10 \text{ MeV}$
- 2D fit $(m_{B_s}, \cos(\theta_K))$: $\cos(\theta_L)$ and $\tilde{\phi}$ are not related to the physics of $B_s^0 \to \phi \gamma$
- Fitted F_L found to be compatible with 0 as expected (real γ)

³triggered exclusively by one of the signal electrons ⁴triggered independent of signal

Full Mass Fit - Very-low - 1D

The angles are blinded.

Fit Validation with pseudo-experiments - WIP

Pseudo-expirements generated with SM values

$$F_L = 0.048, A_T^{(2)} = 0.094,$$

 $A_T^{Re} = 0 \text{ and } A_T^{Im} = 0$

Gaelle KHREICH Flavor Day @IJCLab

$B_s \to \phi ee \text{ vs. } B_d \to K^* ee$

For
$$B_d \to K^*ee:$$
 Expected for $B_s \to \phi ee:$

 450 Signal Events
 98 Signal Events

 $F_L = 0.044 \pm 0.026 \pm 0.014$
 $F_L = XXX \pm 0.050 \pm 0.012$
 $A_T^{(2)} = 0.106 \pm 0.103 \pm 0.016$
 $A_T^{(2)} = XXX \pm 0.240 \pm 0.009$
 $A_T^{Im} = 0.015 \pm 0.102 \pm 0.012$
 $A_T^{ImCP} = XXX \pm 0.240 \pm 0.007$
 $A_T^{Re} = -0.064 \pm 0.077 \pm 0.015$
 $A_T^{ReCP} = XXX \pm 0.160 \pm 0.012$

Systematics are still not computed but estimated based on $\underline{B \to K^* ee}$

- $B_s \to \phi ee$ angular analysis at low- q^2 is a cross check for $B_d \to K^* ee$ with a cleaner channel
- Adds precision on $C_7^{(\prime)}$
- Gives information about the $B_s \bar{B_s}$ mixing

Stay tuned!

Backup

The Analysis - $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)e^+e^-$

The full differential decay rate:

$$\frac{d^{3}\Gamma}{d\cos\theta_{l}d\cos\theta_{k}d\phi} = \frac{9}{32\pi} \left\{ J_{1s}\sin^{2}\theta_{k} + J_{1c}\cos^{2}\theta_{k} + J_{2s}\sin^{2}\theta_{k}\cos2\theta_{l} + J_{2c}\cos^{2}\theta_{k}\cos2\theta_{l} + J_{3}\sin^{2}\theta_{k}\sin^{2}\theta_{l}\cos2\phi + J_{4}\sin2\theta_{k}\sin2\theta_{l}\cos\phi + J_{5}\sin2\theta_{K}\sin\theta_{l}\cos\phi + J_{6s}\sin^{2}\theta_{K}\cos\theta_{l} + J_{6c}\cos^{2}\theta_{K}\cos\theta_{l} + J_{7}\sin2\theta_{k}\sin\theta_{l}\sin\phi + J_{8}\sin2\theta_{K}\sin2\theta_{l}\sin\phi + J_{9}\sin^{2}\theta_{k}\sin^{2}\theta_{l}\sin2\phi \right\}$$

where $J_i(q^2)$: combinations of amplitudes $A_{0,\perp,\parallel}^{L,R}$

The Analysis - $B_s^0 \to \phi(\to K^+K^-)e^+e^-$

In the case of:

- Massless lepton limit
 - $S_{1s} = 3 S_{2s} = \frac{3}{4}(1 F_L)$ • $S_{1c} = -S_{2c} = F_L$
- Fold $\phi \to \phi + \pi$ for $\phi < 0$

• J_i associated to B_s and \bar{J}_i associated to \bar{B}_s

•
$$S_i = \frac{J_i + \bar{J}_i}{\frac{d(\Gamma + \bar{\Gamma})}{dq^2}}$$
 and $A_i = \frac{J_i - \bar{J}_i}{\frac{d(\Gamma + \bar{\Gamma})}{dq^2}}$

$$\frac{1}{\frac{d(\Gamma+\bar{\Gamma})}{dq^2}} \frac{d^3(\Gamma+\bar{\Gamma})}{d\cos\theta_l d\cos\theta_k d\phi} = \frac{9}{32\pi} \left\{ \frac{3}{4} (1-F_L) \sin^2\theta_k + F_L \cos^2\theta_k + \frac{1}{4} (1-F_L) \sin^2\theta_k \cos 2\theta_l \right. \\ \left. -F_L \cos^2\theta_k \cos 2\theta_l + S_3 \sin^2\theta_k \sin^2\theta_l \cos 2\phi + \frac{1}{4} S_4 \sin 2\theta_k \sin^2\theta_l \cos 2\phi + \frac{1}{4} S_4 \sin 2\theta_k \sin^2\theta_l \cos 2\phi + \frac{1}{4} S_5 \sin^2\theta_k \sin^2\theta_l \cos 2\phi + \frac{1}{4} S_5 \sin^2\theta_k \sin^2\theta$$

$$S_3 = \frac{1}{2}(1 - F_L)A_T^{(2)} \qquad A_{6s} = (1 - F_L)A_T^{ReCP} \qquad A_9 = \frac{1}{2}(1 - F_L)A_T^{ImCP}$$

$$\alpha_{HOP} = \frac{p_T(\phi)}{p_T(e^+e^-)}$$

If $\alpha_{HOP} \neq 1 \rightarrow$ some energy is missing in the final state. $\rightarrow p_{corr} = \alpha_{HOP} \times p_{measured} \rightarrow m_{HOP}(K^+K^-e^+e^-)$

- \star Stripping Lines: Bu2LLK_eeLine2.
 - Plus some extra requirements
- \star Two non overlapping trigger categories:
 - $\bullet~{\rm L0I^5}({\rm as~primary~category}):$ triggered independent of signal.
 - L0E ⁶: triggered exclusively by one of the electrons of the signal and not by L0I.

+ HLT1Track and HLT2Topo Lines are used.

 \star The MC corrections are generated within the RX framework following the same Correction chain.

⁵L0I : L0Hadron_TIS (B_s^0) or L0Electron_TIS (B_s^0) or L0Muon_TIS (B_s^0) ⁶L0Electron (e_1, e_2) and !L0I

- w_{PID} : Take ratio of data/simulation efficiencies
- w_{TRK} (only for electrons): Corrections ($\epsilon_{data}/\epsilon_{MC}$) in bins of p_T , η and ϕ .
- $w_{MultKin}$: BDT reweighter using $p(B_s), p_T(B_s), \eta(B_s), n_{Tracks}$
- w_{L0} : ratio of data/simulation computed in bins of electron E_T^{ECAL} , CaloRegion.
- w_{HLT} : computed in bins of track multiplicity
- w_{Reco} : BDT trained using $\chi^2_{IP}(B_s), \chi^2_{IP}(J/\psi)$

Framework - The stripping lines

* Stripping Lines: Bu2LLK_eeLine2.

Particle	Requirement		
	$ m_{\phi ee} - m_{B_s} < 1000 MeV/c^2$		
	End vertex $\chi^2 / \text{ndf} < 9$		
B_s^0	$\chi^{2}_{IP} < 25$		
	DIRA > 0.9995		
	Flight Distance $\chi^2 > 100$		
	$m_{ee} < 5500 MeV/c^2$		
Dilepton	End vertex $\chi^2 / \text{ndf} < 9$		
	Flight distance $\chi^2 > 16$		
	$p_T > 300 MeV/c$		
e	$\chi^2_{IP} > 9$		
	PIDe > 0		
	$m_{KK} < 1100 MeV/c^2$		
ϕ	$p_T > 400 MeV/c$		
	Origin vertex $\chi^2/ndf < 25$		
K	$\chi^2_{IP} > 9$		
	$p_T > 400 MeV/c$		

	HLT1	HLT2
Run 1	Hlt1TrackAllL0	Hlt2Topo[2,3]BodyBBDT
		Hlt2TopoE[2,3]BodyBBDT
2015	Hlt1TrackMVA	Hlt2Topo[2,3]Body
2016 - 2017		Hlt2Topo[2,3]Body
2018	Hlt1TrackMVA	Hlt2TopoE[2,3]Body
		Hlt2TopoEE[2,3]Body

BDT input variables

Gaelle KHREICH

The reconstruction and selection of signal candidates induces a distortion in the angular distributions.

So If generator level events are flat in angles , events after reconstruction and selection point to the detector acceptance.

- Get the Angular Acceptance from the phase space (PHSP) MC : modelized with Legendre Polynome of order 4 for $\cos(\theta_L)$ and $\cos(\theta_K)$) and by $1 + c_{c2}\cos(2\phi) + c_{s2}\sin(2\phi) + c_c\cos(\phi) + c_s\sin(\phi)$ for ϕ^7
- Multiply the signal angular PDF by this acceptance

 $PDF_{Signal}(m, \theta_l, \theta_K, \phi) \rightarrow PDF_{Signal}(m, \theta_l, \theta_K, \phi) \times \epsilon(\theta_l, \theta_K, \phi)$

and ϵ can be factorized: $\epsilon(\theta_l, \theta_K, \phi) = \epsilon(\theta_l) \times \epsilon(\theta_K) \times \epsilon(\phi)$

 $^{^{7}\}phi$ is expected to be flat.

Considering $\cos(\theta_K)$ and $\tilde{\phi}$ flat.

Background Components

Background	Contamination ⁸	Mass		
	(Very-Low)	and angular modeling		
Combinatorial	Given by	$B_s \to \phi e^+ e^-$ data: Mass		
	fit	$B_s \rightarrow \phi e \mu$ data: Angles		
$B^0_s \to \phi \eta (\to e^+ e^- \gamma)$	L0E: $4.2 \pm 0.6 \%$	$B_s^0 \to \phi \eta (\to e^+ e^- \gamma)$		
	L0I: 5.1 \pm 0.7 $\%$	MC		
$B_s^0 \to \phi \pi^0 (\to e^+ e^- \gamma)$	L0E: 1.1 \pm 0.2 %	$B_s^0 \to \phi \pi^0 (\to e^+ e^- \gamma)$		
	L0I: 2.5 \pm 0.5 $\%$	MC		
$B_s^0 \to \phi \gamma (\to e^+ e^-)$	L0E: 2.4 \pm 0.3 %	$B_s^0 \to \phi e^+ e^- \gamma$ -bin		
	L0I: 1.9 \pm 0.3 $\%$	Data and MC		
$B_s^0 \to \phi \phi (\to K^+ K^-)$	< 1%	NO		
$\Lambda_b^0 \to p K^- e^+ e^-$	< 1%	NO		
$B^+ \rightarrow \phi K^+ e^+ e^-$	< 1%	NO		

★ The same background components were checked for the γ -bin and are negligible. ★ $B_s^0 \rightarrow \phi \eta(\gamma \gamma)$ and $B_s^0 \rightarrow \phi \pi^0(\gamma \gamma)$ still need to be studied

 ${}^{8}C_{bkg} = \frac{\mathcal{B}(bkg)) \times \epsilon(bkg))}{\mathcal{B}(B_{s}^{0} \rightarrow \phi e^{+}e^{-})_{m_{ee} \in [10,500]} \times \epsilon(B_{s}^{0} \rightarrow \phi e^{+}e^{-})_{m_{ee} \in [10,500]}}$ Gaelle KHREICH Flavor Day @IJCLab

Fit Strategy in the γ bin (1/2)

Presence of the electrons in $B_s^0 \to \phi \gamma (\to e^+ e^-)$ decay only due to the interaction of the photon with the detector

 $\rightarrow \cos(\theta_L)$ and $\tilde{\phi}$ are not related to the physics of $B_s^0 \rightarrow \phi \gamma$.

- \rightarrow Angular PDF integrated over $\cos(\theta_L)$ and ϕ including the acceptance
- \rightarrow 2D simultaneous fit $(m_{B_s}, \cos(\theta_K))$ in 2 trigger categories on data sharing F_L^{γ} considering only combinatorial for the background.

$$PDF_{\gamma}(m, cos(\theta_{K})) = f_{sig}^{\gamma} \times DSCB_{m}(\alpha_{L}, \alpha_{R}, n_{L}, n_{R}, s.\sigma_{L}, s.\sigma_{R}, \delta.m_{CB})$$
$$\times PDF_{(cos(\theta_{K}))}(F_{L}^{\gamma})$$
$$+ (1 - f_{sig}^{\gamma}) \times Expo_{m}(c_{exp}) \times Poly_{(cos(\theta_{K}))}(c2K)$$

- Fix DSCB's parameters from MC
- Allow data/MC difference with a shift and a scale

Fit strategy in the very-low bin

Simultaneous 4D fit $(m_{B_s}, \cos(\theta_L), \cos(\theta_K), \tilde{\phi})$ in 2 trigger cat.: L0E and L0I.

$PDF_{tot}^{VL}(m,\Omega) = f_{sig}$	×	$PDF_{sig}(m)$	Х	$A_{sig}(\Omega)$
$+ (f_{\gamma} \times f_{sig})$	\times	$PDF_{\gamma}(m)$	\times	$A_{\gamma}(\Omega)$
$+ (f_\eta imes f_{sig})$	\times	$PDF_{\eta}(m)$	\times	$A_{\eta}(\Omega)$
$+ (f_{\pi^0} imes f_{sig})$	\times	$PDF_{\pi^0}(m)$	\times	$A_{\pi^0}(\Omega)$
$+(1-f_{sig}(1+f_{\gamma}+f_{\eta}+f_{\pi^0}))$	\times	$PDF_{comb}(m)$	\times	$A_{comb}(\Omega)$

sharing the angular observables (F_L, A_T⁽²⁾, A_T^{ImCP}, A_T^{ReCP})
f_γ, f_η and f_{π⁰} fixed from MC
Blinding the angles but not the mass

- Fix mass shapes from MC
 - $B_s^0 \to \phi e^+ e^-$: Double Sided Crystal Ball
 - $B_s^0 \to \phi \gamma (\to e^+ e^-)$: Double Sided Crystal Ball
 - $B_s^0 \to \phi \eta (\to \gamma e^+ e^-)$: RooKeyPDF
 - $B_s^0 \to \phi \pi^0 (\to \gamma e^+ e^-)$: RooKeyPDF
- Combinatorial: Exponential function
- Allow small data/MC differences in Signal's CB shift and mean (gaussian constraint to the results obtained on the data fit performed in the γ bin)

- Get Angular acceptance from PhaseSpace MC
- Signal PDF is the PDF $(F_L, A_T^{(2)}, A_T^{ImCP}, A_T^{ReCP}) \times Acceptance$
- Fix Angular shapes from MC for
 - $B_s^0 \to \phi \gamma (\to e^+ e^-)$:
 - $\cos(\theta_K)$: Signal Angular PDF integrated over $\cos(\theta_L)$ and ϕ with $F_L^{\gamma}=0$ including the acceptance
 - $\cos(\theta_L)$: Symmetric Legendre Polynomials of order 4
 - $\tilde{\phi}: 1 + c_{c2}\cos(2\phi) + c_{s2}\sin(2\phi)$
 - $B_s^0 \to \phi \eta (\to \gamma e^+ e^-)$ and $B_s^0 \to \phi \pi^0 (\to \gamma e^+ e^-)$:
 - $\cos(\theta_K)$: Symmetric Chebychev Polynomial of order 4 with $c^2 = 1 + c^4$
 - $\cos(\theta_L)$: Symmetric Legendre Polynomials of order 4
 - $\tilde{\phi}: 1 + c_{c2}\cos(2\phi) + c_{s2}\sin(2\phi)$
- Gaussian constrain the Combinatorial's angular shape with the values of $B_s \to \phi e \mu$ data:
 - $\cos(\theta_K)$ and $\cos(\theta_L)$: Symmetric Legendre Polynomial of order 2
 - $\tilde{\phi}$: $1 + c_{c2}\cos(2\phi) + c_{s2}\sin(2\phi)$

Expected Sensitivity

