

Università degli Studi di Padova

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie IJCLab, Orsay, May 30th, 2023

⁴⁰K-geoneutrino detection

Revealing the missing piece in Earth's thermal puzzle

Andrea Serafini, Anatael Cabrera, Mark Chen, Fabio Mantovani, Virginia Strati

supported by the LiquidO collaboration

andrea.serafini@pd.infn.it

» The "Standard Model" of the Earth

- Ve
- » Geoneutrinos in understanding Earth Sciences
- » Insights from current geoneutrino measurements
- » The missing piece: ⁴⁰K-geoneutrinos

The "Standard Model" of the Earth

Earth has a well-established **layered** structure, visible from its **density profile**:

The Bulk Earth's **mass composition** for **main elements** is well known:

About 0.02% of Earth's mass is composed of radioactive **Heat Producing Elements (HPEs).**

The most important for activity, abundances and half-life time (comparable to Earth's age) are:

- Uranium U ($M_U \sim 10^{-8} M_{Earth}$)
- Thorium Th ($M_{Th} \sim 10^{-8} M_{Earth}$)
- Potassium K (M_K~10⁻⁴ M_{Earth})

Elemental properties

hydroger 1

Н

volatile lithium 3

volatile sodium

11

Na

19 **K**

37 Rb volatile caesium 55

CS volatile francium 87

Fr

*The condensation temperatures are the temperatures at which 50% of the element will be in the form of a solid (rock) under a pressure of 10^{-4} bar.

Chemical properties:

- Siderophiles: dissolve in iron
- Lithophiles: bind with oxygen
- Chalcophiles: combine with XVI
- Atmophile: do not combine

Condensation temperature* (T_C):

- Volatile (T_c < 1300 K)
- **Refractory** (T_c > 1300 K)

				Z			Lithop	nile						XVI		He
bery ll ium 1				X			Siderop	ohile			boron	carbon 6	nitrogen 7	oxygen 8	fluorine	volatile neon 10
Be							Chalco	phi l e			B	Č	Ń	Ů	F	Ne
refractory nagnesium				prope	rty		Synthe	tic			volatile aluminium	volatile silicon	volatile phosphorus	volatile sulfur	volatile chlorine	volatile argon
Mg											AI refractory	Si refractory	P	S volatile		Ar volatile
calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	ga ll ium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
barium 56	refractory	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	volatile mercury 80	volatile thallium 81	volatile lead 82	volatile bismuth 83	polonium 84	astatine 85	radon 86
Ba	57-71	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
refractory radium 88		refractory rutherfordium 104	refractory dubnium 105	refractory seaborgium	refractory bohrium 107	refractory hassium	refractory meitnerium	refractory darmstadtium 110	volatile roentgenium 111	volatile copernicium 112	volatile nihonium 113	vo l atile flerovium 114	volatile moscovium 115	- livermorium 116	tennessine	oganesson
Ra	89 - 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Ög
		_				_		_								
		lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thu l ium 69	ytterbium 70	lutetium 71
		La	Ce	Pr	Nd refractory	Pm	Sm	EU refractory	Gd refractory	I b refractory	Dy refractory	HO	E r refractory	Im	Yb refractory	
		actinium 89	90	protactinium 91	92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobe l ium 102	lawrencium 103
stati	te	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
ondri	te		renactory		Tenactory		-	-	-	-	-			-	-	-

Atmophile

element

helium

Earth evolution in a nutshell

1st differentiation

Primitive Mantle (PM) $[M_{PM} \sim 68\% M_{Earth}]$ Outer Core (OC) $[M_{OC} \sim 31\% M_{Earth}]$ Inner Core (IC) $[M_{IC} \sim 1\% M_{Earth}]$

Siderophile elements (chemical affinity with Fe) in the Core

> Lithophile elements (chemical affinity with O) in the Lithosphere (e.g. U, Th, K)

2nd differentiation

Lithosphere [M_{Lith} ~2% M_{Earth}]
 Mantle [M_{Mantle} ~66% M_{Earth}]
 OC+IC [M_{Core} ~32% M_{Earth}]

Convective and tectonic processes: formation of new crust (oceanic crust) and recycling of continental crust

Earth's heat budget

d is 47 ± 2 TW. t is due to:

- The **total heat power (Q)** of the Earth is well established and is 47 ± 2 TW. What has still to be understood is in which fraction this heat is due to:
- Secular Cooling (C): cooling down caused by the initial hot environment of early formation's stages

C = Q - H

 $C_M = Q - H - C_C$

 $H_{M} = H - H_{LS} - H_{C}$

 $U_{R} = \frac{H - H_{cc}}{Q - H_{cc}}$

 $H_{1S} = H_{CC} + H_{OC} + H_{CLM}$

• Radiogenic Heat (H): due to naturally occurring decays of U, Th and K (HPEs) inside our planet.

H_{cc} = radiogenic power of the continental crust

H_{cc} = radiogenic power of the continental crust

H_{CLM} = radiogenic power of the continental lithospheric mantle

	Range (TW)	Adopted [TW]		Range (TW)	Adopted (TV
	[10 . 27]	102+20	6	10.201	20 + 4
	[10, 57]	19.3 ± 2.9	L	[0, 55]	20 I 4
5	[6;11]	$8.1^{+1.9}_{-1.4}$	CLS	~ 0	0
	[0;31]	11.0 ^{+3.3} -3.4	C _M	[1 ; 29]	17 ± 4
	[0;5]	0	Cc	[5 ; 17]	11 ± 2

 mW/m^2

- » The mass of the lithosphere (~ 2% of the Earth's mass) contains ~ 40% of the total estimated HPEs and it produces H_{LS} ~ 8 TW.
- » Radiogenic power of the mantle H_M and the contributions to C from mantle (C_M) and core (C_C) are model dependent.

LITHOSPHERE

MANTLE

The main reservoirs of the Earth

Despite deep Earth's structure is well understood, its chemical composition is not.

Samples from Lithosphere permit to study its compositions with a statistical significance.

Lithosphere rich in HPEs, directly measurable.

Mantle inaccessible to direct measurements.

 Image: Core
 6370 km

 0.1 x 10²⁴ kg
 6150 km

 0.1 x 10²⁴ kg
 6150 km

 0.1 x 10²⁴ kg
 3480 km

 0.7 x 10²⁴ kg
 1220 km

 1.9 x 10²⁴ kg
 0 km

Core inaccessible and void of HPEs

	a(U) <i>[µg/g]</i>	a(Th) <i>[µg/g]</i>	a(K) <i>[10⁻²g/g]</i>
Lithosphere	$0.25\substack{+0.07 \\ -0.06}$	$1.08^{+0.37}_{-0.23}$	$0.28\substack{+0.07 \\ -0.06}$
Depleted Mantle	?	?	?
Enriched Mantle	?	?	?

Geoneutrinos: anti-neutrinos from the Earth

²³⁸U, ²³²Th and ⁴⁰K in the Earth release heat together with $\bar{\nu}_e$ in a well-fixed ratio:

Decay	T _{1/2} [10 ⁹ y]	$E_{max}(\overline{oldsymbol{ u}})$ [MeV]	$oldsymbol{\epsilon}_{oldsymbol{ar{ u}}}$ [10 ⁷ kg ⁻¹ s ⁻¹]	$\boldsymbol{\epsilon}_{\boldsymbol{H}}$ [10 ⁻⁵ W kg ⁻¹]
238 U \rightarrow 206 Pb + 8 α + 6 e^{-} + 6 $\overline{\nu}_{e}$	4.47	3.36	7.5	9.5
232 Th $\rightarrow ^{208}$ Pb + 6 α + 4 e^{-} + 4 $\overline{\nu}_{e}$	14.0	2.25	1.6	2.6
$^{40}\mathrm{K} ightarrow ^{40}\mathrm{Ca}$ + e ⁻ + $ar{ u}_e$ (89%)	1.28	1.31	23.7	2.9

- » Earth emits (mainly) $\bar{\nu}_e$ ($\Phi \sim 10^7 \text{ cm}^{-2} \text{ s}^{-1}$) whereas Sun shines in ν_e ($\Phi \sim 10^{11} \text{ cm}^{-2} \text{ s}^{-1}$)
- » A fraction of geoneutrinos from U and Th (not from ⁴⁰K) are above threshold for inverse β on protons: $\bar{\nu}_e + p \rightarrow e^+ + n - 1.8 \, MeV$
- » Different components can be distinguished due to different energy spectra
- » Signal unit: 1 TNU = one event per 10³² free protons/year

Open questions geoneutrinos can answer

- » What is the radiogenic contribution to Earth's heat budget?
- » Are the fundamental ideas about Earth's chemical composition correct?
- » What's the distribution of reservoirs in the mantle?
- » Are there any radiogenic elements in the core?
- » What is the volatility slope of the Earth? (K/U ratio?)

Detecting geoneutrinos: Inverse Beta Decay (IBD)

Geoneutrinos are **detected via IBD** in **~kton** Liquid Scintillation Detectors.

 $\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \, \text{MeV}$

Detection requires the coincidence of 2 delayed light signals. It does not permit to observe ${}^{40}\text{K}-\bar{\nu_e}$

Borexino and KamLAND geoneutrino results

KamLAND is a **1 kton** liquid scintillator detector situated in **Japan**, in the Kamioka mine. It is surrounded by 1325 17" PMTs and 554 20" PMTs

Data-taking: 2002-2019*					
U Th U+Th					
Events	$138.0^{+22.3}_{-20.5}$	$34.1^{+5.4}_{-5.1}$	$168.8^{+26.3}_{-26.5}$		
Signal [TNU]	$26.1^{+4.2}_{-3.9}$	$6.6^{+1.1}_{-1.0}$	32. $1^{+5.0}_{-5.0}$		

*new release 11th August 2022

Borexino is **0.3 kton** liquid scintillator detector situated in **Italy**, at the Laboratori Nazionali del Gran Sasso. It is surrounded by ~2200 8" PMTs.

Data-taking: 2007-2019				
U Th U+Th				
Events	$41.1^{+7.5}_{-7.1}$	$11.5^{+2.2}_{-1.9}$	$52.6^{+9.6}_{-9.0}$	
Signal [TNU]	$36.3^{+6.7}_{-6.2}$	$10.5^{+2.1}_{-1.7}$	$47.0^{+8.6}_{-8.1}$	

Extracting the mantle signal: the rationale

U and Th distributed in the Near Field Crust (NFC) gives a significant contribution to the signal (~ 50%).

The **Far Field Lithosphere (FFL)** is the superficial portion of the Earth including the Far Field Crust (FFC) and the Continental Lithospheric Mantle (CLM).

 $S_{Exp}^{i}(U+Th) = \underbrace{S_{NFC}^{i}(U+Th) + S_{FFC}^{i}(U+Th) + S_{CLM}^{i}(U+Th)}_{i} + \underbrace{S_{M}^{i}(U+Th)}_{i}$

Extracting the mantle signal: the rationale

U and Th distributed in the Near Field Crust (NFC) gives a significant contribution to the signal (~ 50%).

The Far Field Lithosphere (FFL) is the superficial portion of the Earth including the Far Field Crust (FFC) and the Continental Lithospheric Mantle (CLM).

To be modeled

$$S_{Exp}^{i}(U+Th) - \left[S_{NFC}^{i}(U+Th) - S_{FFC}^{i}(U+Th) - S_{CLM}^{i}(U+Th)\right] = S_{M}^{i}(U+Th)$$

The geological models need to comply with the following constraints:

- **FFC** model needs to be the same for each *i*-th detector for avoiding biases.
- NFC should be built with geochemical and/or geophysical information typical of the local regions.
- **NFC** must be geometrically complementary to the FFC.

Modeling the geoneutrino signal

Modeling the geoneutrino signal for different reservoirs

Extracting the mantle signal

The mantle signals $S_M^{BX}(U + Th)$ and $S_M^{KL}(U + Th)$ can be inferred by subtracting the estimated lithospheric components from the experimental total signals using their reconstructed PDFs:

 $S_{Exp}^{i}(U+Th) - S_{NFC}^{i}(U+Th) - S_{FFC}^{i}(U+Th) - S_{CLM}^{i}(U+Th) = S_{M}^{i}(U+Th)$

 $S_{Exp}(U+Th)$ [TNU] $S_{NFC}(U+Th)$ [TNU] $S_{FFC}(U+Th)$ [TNU] $S_{CLM}(U+Th)$ [TNU] $S_{M}(U+Th)$ [TNU]

KL	32.1 <u>+</u> 5.0	17.7 <u>+</u> 1.4	$7.3^{+1.5}_{-1.2}$	$1.6^{+2.2}_{-1.0}$	$4.8^{+5.6}_{-5.9}$
BX	$47.0^{+8.6}_{-8.1}$	9.2 ± 1.2	$13.7^{+2.8}_{-2.3}$	$2.2^{+3.1}_{-1.3}$	20.8 ^{+9.4} _{-9.2} 16

Combining KamLAND and Borexino results

The joint distribution $S_M^{KL+BX}(U + Th)$ can be inferred from the mantle signal's PDFs of the two experiments by requiring that:

Where correlations need to be properly accounted for:

- » $S_{FFC}^{KL}(U+Th) \propto S_{FFC}^{BX}(U+Th)$
- » $S_{CLM}^{KL}(U+Th) \propto S_{CLM}^{BX}(U+Th)$

are fully correlated, since they are derived from the same geophysical and geochemical model

Bulk Silicate Earth Models

» The BSE describes the primordial, non-metallic Earth condition that followed planetary accretion and core separation, prior to its differentiation into a mantle and lithosphere.

» Different author proposed a range of BSE models based on different constraints (carbonaceous chondrites, enstatite chondrites, undepleted mantle, etc.)

Mantle radiogenic power from U and Th

Since $H_{LS}(U + Th) = 8.1^{+1.9}_{-1.6}$ TW is independent from the BSE model, the discrimination capability of the combined geoneutrino measurement among the different BSE models can be studied in the space $S_M(U + Th)$ vs $H_M(U + Th)$:

$$S_M(U+Th) = \beta \cdot H_M(U+Th)$$

	Poor-H	Medium-H	Rich-H	KL+BX
H _M (U+Th) [TW]	$3.2^{+2.0}_{-2.1}$	9.3 <u>+</u> 2.9	$20.2^{+3.2}_{-3.3}$	$10.3^{+5.9}_{-6.4}$

Understanding the Earth's heat budget with geoneutrinos

Assuming a K contribution to the radiogenic heat of 17% from geochemical arguments, the combined geoneutrino analysis of **KL and BX** results **constrains**:

	Expected	Combined KL + BX
Q [TW]		47 <u>+</u> 2
H _{LS} [TW]		$8.1^{+1.9}_{-1.6}$
H _M [TW]	$11.3^{+3.3}_{-3.4}$	$12.5^{+7.1}_{-7.7}$
H [TW]	19.3 ± 2.9	20. 8 ^{+7.3} _{-7.9}
C [TW]	27 ± 4	26 ± 8

J.

Geoneutrinos and geoscience: an intriguing joint-venture Bellini et al. Riv. Nuovo Cim. 45, 1–105 (2022).

⁴⁰K in Earth Science

- 1. Our planet seems to contain **10%-30% K respect to** the enstatitic (EH) and carbonaceous (CI) **chondrites** meteorites, respectively.
- 2. Two theories on the fate of the mysterious "missing K" include loss to space during accretion or segregation into the core, but no experimental evidence has been able to confirm or rule out any of the hypotheses, yet.
- 3. Being moderately volatile, K is representative of the depletion of **volatile elements** on Earth. Volatiles' abundances are required to understand deep H_2O cycle and ${}^{40}K{}^{-40}Ar$ system in the Earth.

A direct measurement of the still undetected ⁴⁰K geoneutrinos would be a breakthrough in the comprehension of the Earth's origin and composition.

A quick summary

- » Geoneutrinos are a promising tool to explore the inaccessible Earth:
 - synergy between experimental physics and geochemical/geophysical modeling
 - comprehension of radiogenic production of our planet
 - handle to discriminate Bulk Silicate Earth models

- » ${}^{40}\text{K}-\bar{v}_e$ detection would be a breakthrough in Earth Science:
 - missing piece to heat budget of our planet
 - indicative of volatiles' behavior during Earth formation and evolution
 - new feasible experimental path identified for their detection

⁴⁰K-geoneutrino detection

Revealing the missing piece in Earth's thermal puzzle

Inverse Beta Decay (IBD) detection

Geoneutrinos are **detected via IBD** in **~kton** Liquid Scintillation Detectors.

```
\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \, \text{MeV}
```

Detection requires the coincidence of 2 delayed light signals. It does not permit to observe ${}^{40}{\rm K}{\rm -}\bar{\nu}_e$

Inverse Beta Decay (IBD) detection

Geoneutrinos are **detected via IBD** in **~kton** Liquid Scintillation Detectors.

 $\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \text{ MeV}$

 \bar{v}_e Energy [MeV]

Commun. Phys. 4, 273 (2021)

• High Y natural isotopic abundance

LiquidO: a new detection technique

Long scattering length (>10 m)

Short scattering length (<1 cm)

Opaque Medium

Transparent Medium

Detecting single e⁺ in LiquidO

 \rightarrow **5D imaging**: space (x, y, z), time (t) and energy (E)

Looking for possible ⁴⁰K-geoneutrino IBD targets

List of ingredients for ⁴⁰K geoneutrino detection:

- Methodology to load heavy isotopes → LiquidO tolerance to opacity √
- Capability to detect single e⁺ → LiquidO PID capabilities √
- Isotope capable of IBD with threshold < 1.3 MeV (40 K endpoint) \rightarrow ?

 β^{-} reaction and IBD share the **same matrix element** (dominated by the *ft* parameter)

$$\frac{{}_{Z-1}^{A}Y \to {}_{Z}^{A}X + e^{-} + \bar{\nu}_{e} + Q_{\beta} \longrightarrow ft \longrightarrow \sigma(E) = \frac{2\pi^{2}\ln 2}{ft \, m_{e}^{5}} \, p_{e}E_{e}F(Z, E, R) \frac{\left(2\,J_{f} + 1\right)}{\left(2\,J_{i} + 1\right)}$$

$$\bar{\nu}_{e} + {}_{Z}^{A}X \to e^{+} + {}_{Z-1}^{A}Y - \left(Q_{\beta} + 1.022\,MeV\right) \longrightarrow \sigma(E) = \frac{2\pi^{2}\ln 2}{ft \, m_{e}^{5}} \, p_{e}E_{e}F(Z, E, R) \frac{\left(2\,J_{f} + 1\right)}{\left(2\,J_{i} + 1\right)}$$

Scan of all β^- emitters with Q_{β} <0.3 MeV \rightarrow **17 candidates found:** ³He, ¹⁴N, ³³S, ³⁵Cl, ⁴⁵Sc, ⁶³Cu, ⁷⁹Br, ⁸⁷Sr, ⁹³Nb, ¹⁰⁶Cd, ¹⁰⁷Ag, ¹³⁵Ba, ¹⁴⁷Sm, ¹⁵¹Eu, ¹⁵⁵Gd, ¹⁷¹Yb and ¹⁸⁷Os Previously only 9 of these have been known/considered (<u>Krauss, L. et al., Nature, 1984</u>)

IBD cross-sections weighted by isotopic abundance

$$\overline{\nu}_e + {}^{35}Cl \rightarrow {}^{35}S + e^+ - 1.189 \text{ MeV}$$

 $\overline{\nu}_e + {}^{63}Cu \rightarrow {}^{63}Ni^* + e^+ - 1.176 \text{ MeV}$

³⁵Cl has both a **low threshold** and a **good weighted cross-section**

⁶³Cu seems to be as promising as ³⁵Cl, and additionally lands to an excited level in the final state (possible double coincidence capability)

The golden candidates: ³⁵Cl and ⁶³Cu

There are only **few possible irreducible backgrounds** for ⁴⁰K geoneutrinos detection via IBD:

- true antineutrino events (U, Th and reactors) → can be independently estimated via IBD-p!
- β⁺ emitting background sources:
 - ⁴⁰K contamination of the LS \rightarrow can be reduced with purification
 - natural β^+ emitting isotopes in the target element \rightarrow irreducible

 CI contains ³⁶CI (~² ¹), when produces ~10¹⁰ e⁻ year per 10³² chlorine atoms

- can be loaded in aqueous solution in scintillator cocktails miscible with water √
- has no natural β^+ emitters and provides an additional delayed gamma coincidence \checkmark

⁶³Cu: two distinct detection channels

Rationale for signal extraction

Detection significance

8

6

5

4

3

2

0 0

50

100

150

200

Detector mass [kton]

250

300

350

 $^{40}{\rm K}$ geoneutrino detection significance [σ]

10 years of data with:

50% loading

10% loading

The **detection significance** can be calculated from a **Poisson probability** of the hypothetical observation of N or greater events compared to the null hypothesis that the experimental observation came from only backgrounds.

a)

Detector mass [kton]

Experimental roadmap

⁴⁰K geoneutrino detection is **challenging**, but **no showstopper** a priori. Methodology relies on new **LiquidO** technology, under **R&D**:

2020

μ-LiquidO – proof of principle (light confinement)

2021 - present LiquidO's MINI-II prototype

Future (present) CLOUD project funded and headed to construction <u>https://liquido.ijclab.in2p3.fr/nucloud/</u>

- \rightarrow testing ⁶³Cu cross-section with reactors
- → testing full methodology with reactor IBDs (different loading, scintillator R&D, etc.)

Final remarks

K is essential in understanding Earth's **thermal evolution** and **volatility** pattern. A direct 40 K- $\bar{\nu}_e$ detection would rule out exotic scenarios on the fate of "**missing K**".

At present time, K- \bar{v}_e remains undetected:

- 17 isotopes suitable for ${}^{40}\text{K}-\overline{\nu}_e$ IBD detection identified
- ⁶³Cu resulted as golden candidates

 \rightarrow poor reliability of ⁶³Cu cross section calls for refined nuclear physics inputs (or experimental validation)

A 100 kton (240 kton) LiquidO detector would detect ⁴⁰K-ν_e with 3σ (5σ) significance in 10 years.

(It would also enable sub-percent uncertainties on U and Th geoneutrinos)

Despite challenging, this methodology proves feasible and experimentally testable