Euclid: a mission to unravel the Dark Side of the Universe

Stéphane Ilić (IJCLab, France)

Based on the work and efforts of many members of the Euclid Consortium

CosPT Workshop @ IJCLab, Orsay, 12/05/2023

• The ACDM paradigm: a (relatively) simple model, with many successes...

Inflation

Formation of Light and matter are coupled

Light and matter separate

Dark ages

First stars

Galaxy evolution

The present Universe

• The ACDM paradigm: a (relatively) simple model, with many successes...

- ... but rests on some pillars that are "shrouded in darkness":
 - Primordial Universe, inflation
 - · Dark ages & reionisation

- Dark matter (''CDM'')
- Dark energy $('' \wedge '')$

ST Classification

Inflation models

J.Martin, C.Ringeval, R.Trotta, V.Vennin ASPIC project

Displayed Evidences: 193

PSNLC

RCMI 1.8

-2.1

SSB16

TI1/2

TIn+

-3.0

 TI_{h+}

-3.6

<-12.8

<-14.3

TWI.

TWP.

TWI

TWI

3.6

3.6

RMI₃

RMI₃₁

CNBI

GRIPI_p

GRIPIorB -0.19

GRIPI

GMSSMI

1.27

2.43

1.35

mod.

-1.14

-0.49

1.57

TI^{ft}_{a<1/2} -0.53

TI₀ -1.15

TI[#] >1/2

TIn+1/2 -0.26

RCQI -1.25

SSBI1 -0.16

0.81

2.21

1.46

3.28

1.37

2.57

4

~

~

4

4

-1.08

3.68

4

44

4

€1

4

64

~

 \leftarrow

4

 \leftarrow

 \ll

4

 \leftarrow

4

 \leftarrow

 \Leftrightarrow

4

 \leftarrow

4

 \leftarrow

 \leftarrow

 \leftarrow

 \leftarrow

 \leftarrow

4

4

~

4

~

4

 \leftarrow

4

4

inconcl.

weak

4

4

÷н

éi.

4

• The ACDM paradigm: a (relatively) simple model, with many successes...

- ... but rests on some pillars that are "shrouded in darkness":
 - Primordial Universe, inflation
 - · Dark ages & reionisation

- Dark matter (''CDM'')
- Dark energy (''\')

• The ACDM paradigm: a (relatively) simple model, with many successes...

- ... but rests on some pillars that are "shrouded in darkness":
 - Primordial Universe, inflation

- Dark matter (''CDM'')
- Dark ages & reionisation Dark energy ('' Λ '')
- ... and is shaken by some persistent tensions :
- \cdot H₀ discrepancies \cdot σ_8 tensions \cdot ISW excesses \cdot CMB "anomalies"

Current/upcoming CMB surveys

Future:

- Simons Observatory
- LiteBIRD
- CMB Stage-4

Current/upcoming LSS surveys

DETF classification:

- Stage II: SDSS, KiDS, ...
- Stage III: DES, ...
- Stage IV: DESI, LSST, ...

Current/upcoming LSS surveys

DETF classification:

- Stage II: SDSS, KiDS, ...
- Stage III: DES, ...
- Stage IV: DESI, LSST, ...

The ESA Euclid space telescope mission

→ map the distribution and evolution of galaxies/matter across a large fraction of the observable universe

→ investigate the nature of dark matter and dark energy

"A space mission to map the Dark Universe"

Technical parameters:

- 1.2 m mirror telescope
- 2 instruments:
 - panoramic visible imager (VIS)
 - near infrared photometer (NISP-P) and slitless spectrograph (NISP-S)

Mission parameters:

- Orbit around L2
- ~15,000 sq. deg., up to z~2.5
- Spectro + photo (1.5 B gal) survey
- ~6 years of mission
- Q1 after 17 months, DR1 at 29
- Launch with Soyuz from Kourou
 with Ariane 6 from Kourou
 with Falcon 9 from Cape Canaveral
- Launch date: ...

Technical parameters:

- 1.2 m mirror telescope
- 2 instruments:
 - panoramic visible ima
 - near infrared photom and slitless spectrogr

Mission parameters:

- Orbit around L2
- ~6 years of mission
- ~15,000 sq. deg., up to
- Spectro + photo survey
- Q1 after 17 months, DF
- Launch with Soyuz from Kourou with Ariane 6 from Kourou with Falcon 9 from Cape Canaveral
- Launch date: ...

Technical parameters:

- 1.2 m mirror telescope
- 2 instruments:
 - panoramic visible imager (VIS)
 - near infrared photometer (NISP-P) and slitless spectrograph (NISP-S)

Mission parameters:

- Orbit around L2
- ~15,000 sq. deg., up to z~2.5
- Spectro + photo survey
- ~6 years of mission
- Q1 after 17 months, DR1 at 29
- Launch with Soyuz from Kourou with Ariane 6 from Kourou with Falcon 9 from Cape Canaveral
- Launch date: <u>1st week of July 2023</u>

<u>1500+ members, 200+ institutes, 14+ countries</u>

Science Working Groups (Jan 2016 - update)

19

ESA UNCLASSIFIED - For Official Use

Laureijs - ISSS I'Aquila | Mission I | 22/06/2018 | Slide 59

Euclid publications

Paterson et al.:

Euclid preparation. XXVII. A UV-NIR spectral atlas of compact planetary nebulae for wavelength calibration

Merlin et al.: Euclid preparation. XXV. The Euclid Morphology Challenge. Towards model-fitting photometry for billions of galaxies

Bretonnière et al.: Euclid preparation. XXVI. The Euclid Morphology Challenge. Towards structural parameters for billions of galaxies

Camarena et al.: Euclid: Testing the Copernican principle with next-generation surveys

Cabayol-Garcia et al.: The PAU Survey & Euclid: Improving broadband photometric redshifts with multi-task learning

Moriva et al.: Euclid: Discovering pair-instability supernovae with the Deep Survey

Saglia et al.: Euclid preparation: XX. The Complete Calibration of the Colour–Redshift Relation survey: LBT observations and data release

Keihanen et al.: Euclid: Fast two-point correlation function covariance through linear construction

Humphrev et al.: Euclid preparation. XXII. Selection of Quiescent Galaxies from Mock Photometry using Machine Learning

Nesseris et al.: Euclid: Forecast constraints on consistency tests of the \$\Lambda\$CDM model

Loureiro et al.:

KiDS & Euclid: Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography

Martinelli et al.:

Euclid: constraining dark energy coupled to electromagnetism using astrophysical and laboratory data

Scaramella et al.: Euclid preparation: I. The Euclid Wide Survey Serrano Borlaff et al .: Euclid preparation: XVI. Exploring the ultra low-surface brightness Universe with Euclid/VIS

llic et al.:

Euclid preparation: XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

Stanford et al.:

Euclid preparation: XIV. The complete calibration of the colour-redshift calibration (C3R2) survey: data release 3

Martinelli et al.:

Euclid: impact of nonlinear prescriptions on cosmological parameter estimation from weak lensing cosmic shear

Martinelli et al.:

Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes

Knabenhans et al.:

Euclid preparation: IX. EuclidEmulator2 -- Power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations

Tutusaus et al.:

Euclid: The importance of galaxy clustering and weak lensing cross-correlations within the photometric Euclid survey

Guglielmo et al.:

Euclid preparation: VIII. The Complete Calibration of the Colour-Redshift Relation (C3R2) Survey: VLT/KMOS Observations and Data Release

Pöntinen et al.:

Euclid: Identification of asteroid streaks in simulated images using StreakDet software

Deshpande et al.:

Euclid: On the Reduced Shear Approximation and Magnification Bias for Stage IV Cosmic Shear Experiments

Adam et al.:

Euclid preparation. III. Galaxy cluster detection in the wide photometric survey -performance and algorithms selection

Inserra et al.: Euclid: Superluminous supernovae in the Deep Survey

Knabenhans et al.:

Euclid preparation: II. The EuclidEmulator -- A tool to compute the cosmology dependence of the nonlinear matter power spectrum 22

The science of Euclid

The dark matter and energy can be studied by looking at:

1. The geometry of the universe

 \rightarrow Measure of position of galaxies as a function of redshift

2. Growth of density perturbations

→ Evolution of structure as a function of cosmic time, growth rate

- Structure follows the expansion of the Universe
- Gravity causes structure to evolve

The science of Euclid

The dark matter and energy can be studied by looking at:

1. The geometry of the universe

 \rightarrow Measure of position of galaxies as a function of redshift

2. Growth of density perturbations

→ Evolution of structure as a function of cosmic time, growth rate

Euclid cosmological probes:

Galaxy Clustering

Baryon Acoustic Oscillations (power spectrum at large scales)

redshift-space distortions

The science of Euclid – galaxy clustering

Baryon acoustic oscillations (BAO):

- provide a **cosmic ruler**
- sensitive to the **expansion** history and the angular-diameter **distance**

Redshift-space distortions (RSDs):

- sensitive to the growth rate of structures
- tests of modified gravity

The science of Euclid – galaxy clustering

Spectroscopic vs photometric galaxy clustering:

- loss of radial information
- higher number density & different systematic uncertainties
- source of cosmological information

The science of Euclid

The dark matter and energy can be studied by looking at:

1. The geometry of the universe

 \rightarrow Measure of position of galaxies as a function of redshift

2. Growth of density perturbations

→ Evolution of structure as a function of cosmic time, *growth rate*

Euclid cosmological probes:

- Galaxy Clustering
 - **Baryon Acoustic Oscillations (power spectrum at large scale)**
 - redshift-space distortions
- Weak Gravitational Lensing of galaxies by matter

The science of Euclid – weak lensing

Weak lensing (WL):

- information about **mass distribution** imprinted on galaxy images
- sensitive to matter density, initial conditions, and growth of structures

The science of Euclid – combination

Euclid is the ideal survey for a combined analysis:

GCs, GCp, WL, and 3 cross-correlations (XC)

Forecasts on cosmological constraints

IST:F: Task-force to produce homogenised and validated forecasts:

→ Great complementarity between probes: breaking of degeneracies

Forecasts on cosmological constraints

Forecasts on cosmological constraints

Joint analysis with external probes

Joint analysis with external probes

- Probes of different "sectors":
 - Background evolution: all standard rulers/candles
 - Perturbations: probes of structure growth
- Probes of different epochs:

Joint analysis with external probes

Example with CMB data

CMB cross-correlations working group produce their own set of forecasts

- Euclid main probes + Simons
 Observatory CMB lensing (blue)
- Euclid main probes + all Simons Observatory CMB probes (**orange**)

Improvements up to a factor of 10

[Euclid Collaboration XV., Ilic et al, A&A 657, A91 (2022)]

- Development of cosmological simulations to develop the analysis pipelines:
 - Flagship galaxy catalog [Carretero, Castander, Fosalba, Neissner, Pozzetti, Stadel, Tallada++]:

- WIDE: $10^9 M_{sun}$ resolution (4.1 trillion particles, 3600 Mpc/h box) - DEEP: $10^8 M_{sun}$ resolution (0.9 trillion particles, 1000 Mpc/h box)

Complex measurements: End-to-end simulations — spectroscopic galaxy clustering

[Slide courtesy of B. Granett and GC end-to-end group]

Complex measurements: End-to-end simulations — weak lensing & photometric galaxy clustering

Simulations:

- more volume and resolution, emulators
- end-to-end pipelines
- Modelling of the observables:
 - nonlinear modelling of the matter and galaxy power spectra, including RSDs
 - magnification and other relativistic contributions
- Towards the coming data:
 - addition of systematic uncertainties and mitigation techniques

Conclusions

Euclid will provide unprecedented constraints on dark matter, gravity at cosmological scales and will constrain dark energy better than all current observations together:

Thank you for your attention !