Direct search for axion dark matter with MADMAX

Fabrice Hubaut, Pascal Pralavorio

CPPM/IN2P3 – Aix-Marseille Université (Marseille, FRANCE)

- 1- (Short) Theoretical motivations
- 2- Axion Dark matter searches
- 3- MADMAX experiment
- 4- Prototyping (magnet, receiver, booster) for first physics
- 5- French contributions, Timeline

(Short) Theoretical motivations

□ Sources of CP violation in the Standard Model [one of the Sakharov conditions]

- CP violation exists in weak interaction: observed in 1964 in kaon system
 - ✓ Associated phase in quark-mixing CKM matrix measured : δ_{13} ~ 1.2 rad
 - ✓ Phase still to be measured in lepton sector (PMNS matrix) : T2K, DUNE, ORCA, ...

CP violation in strong interaction ?

- ✓ CP-violating term in QCD Lagrangian (controlled by Θ) is allowed and should exist
- ✓ ... but $|\Theta|$ < **10**⁻¹⁰ from neutron electric dipole moment

- Electric dipole moment: d_N = e·l
- If strong CP : $d_N \sim \Theta \times 10^{-16} e \cdot cm$
- Experimental results today:
 → d_N < 3x10⁻²⁶ e·cm → |Θ| < 10⁻¹⁰

\rightarrow Strong CP Problem = naturalness problem. Why is $|\Theta|$ so small ?

(Short) Theoretical motivations

□ Solution to Strong CP problem → Axion [motivated by particle physics]

- Mechanism: new global U(1) symmetry (Peccei-Quinn, 1977) spont. broken at scale f_a >> f_{EW}
 - \rightarrow Makes Θ a dynamical field ($\Theta = a/f_a$), with a = pseudo-scalar boson
 - → Suppress CP-violating term in Lagrangian ($\Theta_{eff} \rightarrow \Theta$ a/f_a) : explains absence of CP strong
- Consequence: generation of a Goldstone boson = axion (Weinberg-Wilczek, 1978)
 - → Properties are all known given the scale of symmetry breaking f_a [mass $m_a \approx m_\pi f_\pi/f_a << eV$]
 - \rightarrow Very weak couplings to SM particles (suppressed by f_a) and $\tau_{axion} > t_{Universe}$
- Cosmology: Non-thermal axion production at T~f_a (can occur before or after inflation)

Axion = natural candidate for DM for $m_a = 1 - 10^3 \mu eV$ (i.e. $f_a = 10^{12} - 10^9 GeV >> f_{EW}$)

Remark: ALP (Axion Like Particle) = scalar not solving strong CP problem but potential DM candidate

Axion/ALP searches

Complementarity between the 3 approaches at the DESY Hub

Axion Dark Matter searches (1/2)

Extraordinary weak coupling of axions to photons ...

- Only 1 experiment (ADMX) currently probe a (very small) part of the favored phase space
- Vast R&D program to improve signal sensitivity and expand range of axion mass search (*post-inflationary scenarios suggests* $m_a \sim 100 \ \mu eV$)

Next decade promising : axion DM most favorable region will be probed

Axion Dark Matter searches (2/2)

□ ... make axions extraordinary challenging to detect

- Convert axions into photons [E field of $O(10^{-12}, \frac{B}{10T})$ V/m] \rightarrow high B_{field} [B >> 1T]
- Boost E_{field} [up to detectable P~10⁻²² W] → resonant cavities
- Scan over range of axion mass
 tunable set-up

New ideas of last decade coming to maturity to scan favored mass range

MADMAX experiment (1/2) White Paper [EPJC 79 (2019) 186, 1901.07401]

Principles

• Axion mass scan : by moving discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

MADMAX exploits a new exp. approach to cover an uncharted phase space [post-inflationary scenarios suggests m₂ ~ 100 μeV]

MADMAX experiment (2/2)

~ 50 people, French (2), German (6) and Spanish (1) institutes

Start with prototyping phase to validate concept: cutting-edge R&D

Need a Magnet

CERN borrows us the world largest warm bore dipole magnet

- Jun 1978 : Installation in the North Area at CERN
- Sep 2020 : CERN RB approves usage by MadMax (YETS)
- Mar 2021 : full refurbishing around magnet area
- Mar 2022 : installation of new power converters
- Apr 2022 : magnet recommissioning

Mar-Apr 2023: MADMAX full user of the magnet.

Need a Receiver System

Composed of

- Low Noise Amplifier (LNA) ...
 - "Classic" HEMT

- ✓ Three mixing stages to down sample from 20 GHz to 50 MHz
- ✓ Fast Fourier Transform in 4 samplers → 1% dead time
- ✓ Tested at CERN in 2022 but saturation and time instability
- ... connected to commercial spectrum analyzer (Keysight)
 - ✓ Tested at CERN in 2023 : stable, no saturation but higher dead time*

* Improve dead time next year by adding data streaming

Develop the booster concept

□ Address the two main challenges

- Move the disks at μm level precision at cold and under high B-field
- Understand RF behavior → Calibrate boost factor
- → Ultimately do physics !

	Name	Goal	Туре	Made of	Avail.	Test Room Temp. Cold (10 K)
	P200	Piezo-motor + mechanics	Open Booster	1 moveable disk φ = 200 mm	2021	2022
	CB100	RF studies + First physics	Closed booster	3 fixed disks $\phi = 100$ mm	2021	2022, 23, 24
	CB200	RF studies + First physics	Closed Booster	4 fixed disks ϕ = 200 mm	2022	24
	Proto-3	Scan ALP around 100 μeV	Open Booster	3 moveable disks ϕ = 300 mm	2024	25, 26?

Gradually building the 'final' booster design

Testing the disk drive (1/2)

Name	Goal	Concept	Made of	Avail.	ALP Test
P200	Piezo-motor + mechanics	Open Booster	1 moveable disk φ = 200 mm	2021	2022

Test one commercial JPE piezo motor at 5 K and 5.3 T (*ALP magnet in DESY*) Build full mechanical structure of Open Booster and insert 1 mirror + 1 disk (3 piezo motors)

Testing the disk drive (2/2)

RF Studies (1/2)

RF Studies (2/2)

Name	Goal	Concept	Made of	Avail.	Morpurgo Test
CB100	RF studies	Closed booster	3 fixed disks $\phi = 100$ mm	2021	2022

First Physics

First ALP Physics

Name	Goal	Concept	Made of	Avail.	Morpurgo Test
CB100	RF studies + First physics	Closed booster	3 fixed disks $\phi = 100$ mm	2021	2024

Develop a 'cheap' cryostat with CERN cryolab to cool the booster + LNA \rightarrow Validated the principle in 2023

Provided we understand calibration at cold → Improve reach

ALP Physics ++

Name	Goal	Concept	Made of	Avail.	Morpurgo Test
Proto-3	Scan ALP around 100 μeV	Open Booster	3 moveable disks ϕ = 300 mm	2024	2025, 26?

Open Booster inserted in a Stainless Steel cryostat *(to be delivered in Mar 2024)*

Morpurgo CERN area refurbished to host the SS cryostat

Long cold run + mass scan

MADMAX and France (1/2)

Two French institutes joined MADMAX in 2020

- CPPM (2 physicists, 3 engineers, 1 PhD): booster high precision mechanics, CERN infrastructure and coordination. Supported by IN2P3 for 4 years starting Jan 2023
- Institut Neel : ultra-low noise amplifier
- + CEA-IRFU : work for the final magnet
- + IRL DMLab : installed at DESY → MADMAX is one of the supported project

(more in back-up)

MADMAX looking for new (French) institutes to join !

MADMAX and France (2/2)

Progresses on final magnet

 Design completed: 2x9 skateboard coils with novel copper CICC conductor [NbTi with Cu jacket @ 1.8K]

- Recently demonstrated that coils will be safe in terms of quench protection
- Next : Design, manufacture and test a small MADMAX coil (6T)

Progresses on final receiver

- Very low noise pre-amplifier [P_{sig}~T_{sys}]
 HEMT (G=33 dB, 4K added noise) below 40 GHz
- Josephson Junction being developed to further minimize noise (quantum limit)

TWPA prototype with G>20 dB and 1K added noise at 10 GHz

• Next: >40 GHz techno. to be developed

MADMAX timescale

Sources of axions

Axion scales

Dielectric haloscope

□ Dielectric haloscope → MadMax experiment

- New experimental concept to alleviate cavity limitation at high m_a (V~1/m_a³)
- Discs + mirror in B_e + wave emission @ interfaces + constructive interferences + resonances

[\]rightarrow MadMax only capable to explore m_a=40-400 \mueV (favored by post-inflation theory)

G10 cryostat

Spectrum Analyzer

2023 \rightarrow Keysigth : N9040B

2024 → Rhode&Schwarz FSW26 with streaming option

System calibration (1/3)

Spectrum Analyser

1- Power (W/kHz) to Thermal Noise Temp. (K) :

- Use a well calibrated diode with a 30 dB Attenuator
- T Diode On = Room Temperature + 50K = 345 K
- T Diode Off = Room Temperature = 295 K
- With P (Diode On), P (Diode Off), estimate reflections
- From P (LNA + Booster), P (Diode On), P (Diode Off) deduce T (LNA + Booster)

- 2- ADS model (I_n, U_n) for LNA Noise
 - Short / Open / Load with RF switch

System calibration (2/3)

Spectrum Analyser

1- Power (W/kHz) to Thermal Noise Temp. (K) :

- Use a well calibrated diode with a 30 dB Attenuator
- T Diode On = Room Temperature + 50K = 345 K
- T Diode Off = Room Temperature = 295 K
- With P (Diode On), P (Diode Off), estimate reflections
- From P (LNA + Booster), P (Diode On), P (Diode Off) deduce T (LNA + Booster)

- 2- ADS model (I_n, U_n) for LNA Noise
 - · Short / Open / Load with RF switch

MADMAX

System calibration (3/3)

3- Reflectivity measurements with a VNA

Should match the 3D COMSOL simulation of the booster + taper

4- Merge ADS and COMSOL simulations to predict T (K)

• Should match the measured T (SA)

• Wavy because of coherent and destructive interference (different propagation length) when injecting the LNA noise in the booster

5- Deduce the Booster factor from the model

Including uncertainties

CPPM pioneer at IN2P3 in direct searches for axions, world rising activity and in particular in Germany (DESY "Axion Hub")

Precision mechanics at CPPM for the prototype boosters

- Precision 3D measurements $O(\mu m)$ for geometry control of the prototype disks
 - CPPM expertise/infrastructure for precision measurements (e.g. ATLAS pixels)
- 2 Conception/fabrication of disk support rings
 - Interfaces between disks, piezo motors and interferometer system
 - Cutting edge and challenging R&D → Optimisation of fabrication process to obtain best planarity (<10µm)

Infrastructures at CERN for protos tests protos in Morpurgo magnet

- 3 Conception, fabrication and installation of mecanical interfaces prototypes-Morpurgo
 - Rails for electric racks, supports for prototypes, rails for big test cryostat
- 4 Coordination of tests at CERN (programme 2021-2025 approved by SPSC) → tests prototypes CB100 (physics) and P200 (meca) in April 2022 in Morpurgo magnet 1.6T

15/11/2022

HCERES - CPPM Dark Matter team

HCERES - CPPM Dark Matter team

4 Tests of two first prototypes in April 2022 in Morpurgo (during SPS shutdowns)

 \rightarrow CPPM drives magnet @ CERN + participates to search for ALP @ ~80 μ eV

15/11/2022

HCERES - CPPM Dark Matter team