MSSM-inflation

MSSM = Minimal Supersymmetric Standard Model

Linking cosmic inflation to high energy physics

Gilles Weymann-Despres

in collaboration with Gilbert Moultaka, Sophie Henrot-Versillé, Vincent Vennin, Laurent Duflot, Richard Freiherr von Eckardstein

Based on arXiv:2304.04534, submitted to PRD

12/05/2023

Outline

HEP (eg: at LHC)

Cosmology and CMB (eg: Planck satellite, ...)

- 1) The paradigm: slow-roll inflation
- 2) **MSSM-inflation**, a supersymmetric extension of the particle physics Standard Model
- 3) Initial conditions in the MSSM-inflation phase-space
- 4) **Results** on the **parameter space**

Ingredients:

Friedmann equations

$$\begin{aligned} H^2 &= \frac{8\pi G}{3}\rho - \frac{\mathcal{K}}{a^2} + \frac{\Lambda}{3}, \\ \frac{\ddot{a}}{a} &= -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda}{3}, \end{aligned}$$

=> Excellent fit to the data!

ΛCDM

Primordial power spectra

$$\mathcal{P}_{\zeta}(k) = A_S \left(\frac{k}{k_*}\right)^{n_S - 1 + \frac{1}{2}n_{S,run} \ln(k/k_*)}$$
$$\mathcal{P}_h(k) = \frac{r}{A_S} \left(\frac{k}{k_*}\right)^{n_T + \frac{1}{2}n_{T,run} \ln(k/k_*)}$$

Ingredients:

Friedmann equations

$$H^{2} = \frac{8\pi G}{3}\rho - \frac{\mathcal{K}}{a^{2}} + \frac{\Lambda}{3},$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda}{3},$$

=> <u>Excellent fit to the data!</u> Problems:

ΛCDM

The primordial fluctuations:

Flatness problem

- Why their **power spectrum** looks like a **power law**?
 - What is the **mechanism** that generated them?

Horizon problem

Ingredients:

Friedmann equations

Flatness problem

 $H^2 = \frac{8\pi G}{3}\rho - \frac{\mathcal{K}}{a^2} + \frac{\Lambda}{3},$ $\ddot{a} = -\frac{4\pi G}{2}(\rho + 3P) + \frac{\Lambda}{2},$

=> Excellent fit to the data! **Problems**:

CDM

What is the **mechanism** that generated them?

Horizon problem

One solution: Inflation: A phase of accelerated expansion in the very young universe, which needs to be sufficiently long $N = \ln \frac{a_{end}}{a_{in}} > 50$.

 \land gives an example of **\ddot{a} > 0** universe, **of (quasi)-de-Sitter universe**:

- The galaxies get diluted exponentially,
- The **dark energy density** remains **constant** with the expansion, -

Friedmann equations => it is like a **fluid** with $\rho = -P$

Scalar field rolling on its potential

Action of a **single scalar field** minimally coupled to gravity:

$$S_{\phi} = -\int \mathrm{d}^4 x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + V(\phi) \right]$$

Energy-momentum tensor:

momentum tensor:

$$T_{\mu\nu} \equiv -\frac{2}{\sqrt{-g}} \frac{\partial S_{\text{matter}}}{\partial g_{\mu\nu}}$$

Density and pressure:

$$\rho = \frac{\dot{\phi}^2}{2} + V,$$

$$p = \frac{\dot{\phi}^2}{2} - V.$$

Klein-gordon equation:

$$\ddot{\phi} + 3H\dot{\phi} + V' = 0$$

Same equation: **ball rolling down** a **slope**!

Slow-rolling of a scalar field

If the potential has a **flat region**, the scalar field **velocity** will become small and its kinetic energy **negligible** with respect to its **potential energy**.

$$\rho = \frac{\dot{\phi}^2}{2} + V,$$

$$p = \frac{\dot{\phi}^2}{2} - V.$$

$$\Rightarrow \rho = -P$$

The **slow-roll approximation** consists of that alongside with

$$\ddot{\phi} + 3H\dot{\phi} + V' = 0$$

Equivalent to conditions on the potential, that quantify the **deviation from de-Sitter** and the **flatness of the potential**

$$\begin{split} \epsilon_0 &\equiv \frac{H_{in}}{H} = H_{in} \sqrt{\frac{3M_{PL}^2}{V}}, \\ \epsilon_1 &\equiv \frac{\mathrm{d}\ln|\epsilon_0|}{\mathrm{d}N} = \frac{M_{PL}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1, \\ \epsilon_{n+1} &\equiv \frac{\mathrm{d}\ln|\epsilon_n|}{\mathrm{d}N} \ll 1. \end{split}$$

Convenient for inflation:

If the slow-roll region (where the potential is quasi-flat) is sufficiently long, then all the trajectories end being attracted into the low-velocity slow-roll regime. No need to worry about the initial conditions $(\phi, \dot{\phi})$.

Linking slow-roll to observables

Now we have a **quasi de-Sitter** universe that can **solve** the **A**CDM **opened questions**, and in particular **predicts** the origin of the **perturbations**, and their primordial power spectra, **scalar** \mathscr{P}_{ζ} and **tensor** \mathscr{P}_h .

<u>How</u>? Add a perturbation to the scalar action, derive the new equation of motions for the perturbation, quantize it, and after some calculus...

<u>Result</u>:

$$\frac{\phi \rightarrow V(\phi, p), \ln R_{\rm rad} \Longrightarrow \phi_{*}}{\Delta N_{*}^{\rm SRLO} \ln R_{\rm rad} - \ln \left(\frac{k_{*}}{a_{0} \tilde{\rho}_{\mathcal{V}}^{1/4}}\right) - \frac{1}{4} \ln \left[\frac{9V_{\rm end}}{s_{1} \star 3^{-} \varepsilon_{1\rm end})V_{*}}\right] + \frac{1}{4} \ln(8\pi^{2}A_{\rm S})$$

$$\frac{\Delta N_{*}^{\rm SRLO} \ln R_{\rm rad} - \ln \left(\frac{k_{*}}{a_{0} \tilde{\rho}_{\mathcal{V}}^{1/4}}\right) - \frac{1}{4} \ln \left[\frac{9V_{\rm end}}{s_{1} \star 3^{-} \varepsilon_{1\rm end})V_{*}}\right] + \frac{1}{4} \ln(8\pi^{2}A_{\rm S})$$

$$\frac{\Delta N_{*}^{\rm SRLO} \int_{\phi_{\rm end}} \frac{V(\phi)}{V_{\phi}(\phi)} d\phi}{V_{\phi}(\phi)} d\phi$$

$$\phi \to V(\phi, p), \ln R_{\mathrm{rad}} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_{\mathrm{S}}, n_{\mathrm{S}}, n_{\mathrm{S},\mathrm{run}}, r, n_{\mathrm{T}}, n_{\mathrm{T},\mathrm{run}}, N_{\mathrm{e-folds}} \dots\}$$

$$\underbrace{\mathsf{Amplitude}}_{A_{\mathrm{S}} \equiv \mathscr{P}_{\mathcal{C}}|_{k_*} \stackrel{\mathrm{suc}}{\simeq} \frac{V_*}{24\pi^2 M_{\mathrm{P}}^4 \varepsilon_{\mathrm{I}*}}}_{r \equiv \frac{\mathscr{P}_{\mathcal{L}}}{\mathscr{P}_{\mathcal{C}}}|_{k_*} \stackrel{\mathrm{suc}}{\simeq} 16\varepsilon_{\mathrm{I}*}}, \qquad \underbrace{\mathsf{Iit}}_{n_{\mathrm{T}} \equiv \frac{\mathrm{dln}\mathscr{P}_{\mathcal{L}}}{\mathrm{dln}\,k}|_{k_*} \stackrel{\mathrm{suc}}{\simeq} 2\varepsilon_{\mathrm{I}*}}}_{\mathfrak{S} = 2\varepsilon_{\mathrm{I}}} = \underbrace{\mathsf{R}}_{\mathrm{suc}} \stackrel{\mathrm{suc}}{\simeq} 2\varepsilon_{\mathrm{I}*} \varepsilon_{\mathrm{suc}}}_{\mathfrak{S} = 2\varepsilon_{\mathrm{I}} \varepsilon_{\mathrm{suc}}}$$

$$\phi \to V(\phi, p), \ln R_{rad} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_s, n_s, n_{s,run}, r, n_T, n_{T,run}, N_{e-folds} \dots\}$$

Given an observation, we can deduce the allowed potential params as done in *J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ.* 5-6, 75 (2014), **1303.3787**

Planck collaboration X, Astron. Astrophys. 641, A10 (2020).

- The shape of these **potentials** are theoretically well-**motivated** but still quite **effective**
- Few of them come with a complete study of their embedding within a model of particle physics
- In the following, a case study: MSSM-inflation

MSSM-inflation

- **MSSM** = **SUperSYmmetric** extension of the HEP SM.
 - Naturally provides a **WIMP** that can explain the measured $\Omega_{cdm}h^2$. Ο

250

50

- Only a **small fraction** of its parameter space is **excluded** by LHC data. Ο
- **Inflaton** = scalar field, evolves with the Klein-Gordon equation in the **MSSM scalar potential** along its valleys ("flat directions").
- We focus on two of its flat-directions combinations of scalar fields:
 - "LLe" Ο
 - "udd" \bigcirc

....

Studied previously in (not exhaustive):

K. Enqvist and A. Mazumdar, Physics Reports 380, 99 (2003), ISSN

R. Allahverdi, K. Enqvist, J. Garcia-Bellido, and A. Mazumdar, Phys. Rev. Lett. 97, (2006)

C. Boehm, J. Da Silva, A. Mazumdar, and E. Pukartas, Phys. Rev. D 87, 023529 (2013)

MSSM-inflation potential

The **potential** for *LLe* and *udd*:
$$V_{\text{tree}}(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 - \sqrt{2}A_6\frac{\lambda_6\phi^6}{6M_{\text{Pl}}^3} + \lambda_6^2\frac{\phi^{10}}{M_{\text{Pl}}^6}$$

where ϕ is the real **field value** associated to the inflaton, m_{ϕ} its **mass**. m_{ϕ} and A_6 are **linked** to the underlying **supersymmetric parameters**.

MSSM-inflation potential

The **potential** for *LLe* and *udd*:
$$V_{\text{tree}}(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 - \sqrt{2}A_6\frac{\lambda_6\phi^6}{6M_{\text{Pl}}^3} + \lambda_6^2\frac{\phi^{10}}{M_{\text{Pl}}^6}$$

where ϕ is the real **field value** associated to the inflaton, m_{ϕ} its **mass**. m_{ϕ} and A_6 are **linked** to the underlying **supersymmetric parameters**.

MSSM-inflation potential

The **potential** for *LLe* and *udd*:
$$V_{\text{tree}}(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 - \sqrt{2}A_6\frac{\lambda_6\phi^6}{6M_{\text{Pl}}^3} + \lambda_6^2\frac{\phi^{10}}{M_{\text{Pl}}^6}$$

where ϕ is the real **field value** associated to the inflaton, m_{ϕ} its **mass**. m_{ϕ} and A_6 are **linked** to the underlying **supersymmetric parameters**.

Phase space of the inflaton

To study that, go to phase space

Already one sees that the **trajectories** beginning **too far from flat inflection point do not follow the SR** trajectory (black-dashed line)

Robustness of slow-roll attractor

• Very narrow slow-roll region implies for various trajectories:

• Only few trajectories are attracted into the slow-roll regime

... Slow-roll NOT independent of the initial conditions

... **not usual** for a single field slow-roll ²³

- NEW •
- $V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**
 - functions of the **gaugino masses** and the **gauge couplings** at **GUT**.
 - vary whether the inflaton is along *udd* or *LLe*

$$m_{\phi}^2 = m_{\phi}^2(\phi)$$
$$A_6 = A_6(\phi)$$
$$\lambda_6 = \lambda_6(\phi)$$

- NEW >
- $V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**

$$m_{\phi}^2 = m_{\phi}^2(\phi)$$
$$A_6 = A_6(\phi)$$
$$\lambda_6 = \lambda_6(\phi)$$

- functions of the **gaugino masses** and the **gauge couplings** at **GUT**.
- vary whether the inflaton is along *udd* or *LLe*

- NEW >
- $V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**

$$m_{\phi}^2 = m_{\phi}^2(\phi)$$
$$A_6 = A_6(\phi)$$
$$\lambda_6 = \lambda_6(\phi)$$

- functions of the **gaugino masses** and the **gauge couplings** at **GUT**.
- vary whether the inflaton is along *udd* or *LLe*

- NEW >
- $V_{
 m RGE}$ whose parameters depend on ϕ .
- Radiative corrections
 - fully computable with the **Renormalization Group Equations**

$$m_{\phi}^2 = m_{\phi}^2(\phi)$$
$$A_6 = A_6(\phi)$$
$$\lambda_6 = \lambda_6(\phi)$$

- functions of the **gaugino masses** and the **gauge couplings** at **GUT**.
- vary whether the inflaton is along *udd* or *LLe*

Radiative corrections impact on the parameters

• 3 potential **parameters** - 2 CMB **constraints** = 1 **d.o.f**. Choice: Sample on ϕ_0 or on A6.

• How do these contours **change** beyond tree-level?

Radiative corrections impact on the parameters

- Not taking properly into account the RGE corrections induces a systematic bias:
 - of order **100-1000 GeV** depending on the inflation scale!
 - well above the *ns/As statistical error*!

[*] S. Henrot-Versillé, et al. Phys. Rev. D 89, 055017 (2014) Toward a global fit

We have identified **some points** [*] for **various dark matter annihilation processes** satisfying:

HEP Constraints:

- Higgs mass (and BR)
- LHC SUSY searches
- ... not exhaustive

Toward a global fit

We have identified **some points** [*] for **various dark matter annihilation processes** satisfying:

Conclusions & Outlooks

This work: arxiv:2304.04534 We have revisited the **MSSM-inflation**, a **rigorous** and **computable** framework which builds a bridge between two worlds, **HEP** and **inflation**, thanks to a **slow-roll flat-inflection potential**.

In this study-case, **RGE corrections cannot be neglected**, and should be accounted for precisely

=> We have shown that **cosmology** can be very **sensitive** to them.

This will be even more true in the coming years (with the expected) **improvement** of **ns** & **nsrun**, and with the **new LHC runs**).

Future:

- More systematic **exploration** of the **parameter space**
- Inclusion of the **reheating duration** computation
- Beyond MSSM : NMSSM, Multi-field inflation...

BACKUPS

Radiative corrections impact on the fine-tuning

- The potential at **inflection point** ϕ_0 has to be very close to flat. $\begin{cases} V_{\phi\phi}(\phi_0) = 0 \\ V_{\phi}(\phi_0) = \nu \simeq 0 \end{cases}$

At tree level:

How to get ϕ_* ?

$$\Delta N_* \stackrel{\text{\tiny SRLO}}{\simeq} \int_{\phi_{\text{end}}}^{\phi_*} \frac{V(\phi)}{V_{\phi}(\phi)} d\phi \qquad \dots \text{ how to get } \Delta N_* \text{ then?}$$

How to get ϕ_* ?

How to get ϕ_* ?

Radiative corrections impact on the fine-tuning

The potential at **inflection point** ϕ_0 has to be very close to flat. $\begin{cases} V_{\phi\phi}(\phi_0) = 0 \\ V_{\phi}(\phi_0) = \nu \simeq 0 \end{cases}$

At tree level:

RGE: Does it mean the fine tuning is **relaxed**? •

 $0 < 1 - \frac{A_6^2}{20m_{\phi}^2} \ll 1$.

Radiative corrections impact on the fine-tuning

- The potential at **inflection point** ϕ_0 has to be very close to flat. $\begin{cases} V_{\phi\phi}(\phi_0) = 0 \\ V_{\phi}(\phi_0) = \nu \simeq 0 \end{cases}$

Cosmology: observables (1)

• Hubble's law & cosmic expansion (1929):

=> High energy in the past.
=> prediction of

- Primordial nucleosynthesis
- Cosmic microwave background emission

a Before recombination

b After recombination

Cosmology: observables (2)

TE: EE: BB:

41

ACDM: 1) ingredients

Einstein equations for the whole universe => **Friedman** equations

$$\begin{split} H^2 &= \frac{8\pi G}{3}\rho - \frac{\mathcal{K}}{a^2} + \frac{\Lambda}{3}, \\ \frac{\ddot{a}}{a} &= -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda}{3}, \end{split}$$

ACDM: 1) ingredients

Einstein equations for the whole universe => **Friedman** equations

$$\begin{split} H^2 &= \frac{8\pi G}{3}\rho - \frac{\mathcal{K}}{a^2} + \frac{\Lambda}{3}, \\ \frac{\ddot{a}}{a} &= -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda}{3}, \end{split}$$

+ Initial conditions for the densities (today)

ACDM: 1) ingredients

Einstein equations for the whole universe => **Friedman** equations

$$\begin{aligned} H^2 &= \frac{8\pi G}{3}\rho - \frac{\mathcal{K}}{a^2} + \frac{\Lambda}{3}, \\ \frac{\ddot{a}}{a} &= -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda}{3}, \end{aligned}$$

+ Initial conditions for the perturbations

+ Initial conditions for the densities (today)

• tensor ones:

at **k***:

- amplitude: **r**
- slope: *nt*

∧CDM: 2) results

only 6 dof's

- 3 density params
- 2 params linked to IC for perturbations
- 1 late-time param
 - that fits very well the data

- predicts unambiguously an universe history

Robustness of slow-roll attractor

• Very narrow slow-roll region implies for various trajectories:

Robustness of slow-roll attractor

The trajectories attracted into the slow-roll regime are rare

... Not a very good attractor!

... not usual for a single field slow-roll

RGE impact on the parameter space

- Two types of error, either versus ϕ_0 or $A_6(GUT)$.
 - A statistical error on ns/As: $\sigma_{n_{\rm S},i}^{\rm BP_j}[p] = \frac{1}{2} \left| p^{\rm RGE}(n_{\rm S} = \overline{n_{\rm S}} + \sigma_{n_{\rm S}}) p^{\rm RGE}(n_{\rm S} = \overline{n_{\rm S}} \sigma_{n_{\rm S}}) \right|$
 - Impact of corrections

S/AS: $\sigma_{n_{\rm S},i}[p] = \frac{1}{2} |p^{\rm KGE}(n_{\rm S} = n_{\rm S} + \sigma_{n_{\rm S}}) - p^{\rm KGE}(n_{\rm S} = n_{\rm S}) \Delta_i^{\rm BP_j}[p] = p^{\rm RGE}(n_{\rm S} = \overline{n_{\rm S}}) - p^{\rm tree}(n_{\rm S} = \overline{n_{\rm S}})$

• The systematic error is not negligible!

Cosmology beyond As and ns

• ns_run: potential constraining power in a near future

for phi0 = 1e15 (<= mphi at lhc), ns_run = **4.4e-3**

- nt and nt_run: beyond experimental reach
- No induced gravitational waves
- No non gaussianities

Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

Josquin Errard, *,a,b,c,d Stephen M. Feeney, *,e Hiranya V. Peiris, f and Andrew H. Jaffe^e

We show that in the case of CMB, synchrotron and dust, and after delensing and marginalization over foreground residuals, the best pre-2020 instruments in combination with Planck can reach $\sigma(r) \sim 3 \times 10^{-3}$, $\sigma(nt) \sim 0.2$, $\sigma(n_s) \sim 2.2 \times 10^{-3}$, $\sigma(\alpha_s) \sim 3 \times 10^{-3}$, $\sigma(M_v) \sim 55$ meV, $\sigma(w) \sim 0.16$, $\sigma(w_0) \sim 0.36$, $\sigma(w_a) \sim 0.71$, $\sigma(N_{eff}) \sim 0.05 - 0.06$ and $\sigma(\Omega_k) \sim 2.5 \times 10^{-3}$ when delensing using the CMB×CIB method. Post-2020 instruments, in particular the combination of the ground-based Stage-IV and a space mission, could reach constraints $\sigma(r) \sim 1.3 \times 10^{-4}$, $\sigma(n_t) \sim 0.03$, $\sigma(n_s) \sim 1.8 \times 10^{-3}$, $\sigma(\alpha_s) \sim 1.7 \times 10^{-3}$, $\sigma(M_v) \sim 31$ meV, $\sigma(w) \sim 0.09$, $\sigma(w_0) \sim 0.25$, $\sigma(w_a) \sim 0.50$, $\sigma(N_{eff}) \sim 0.024$ and $\sigma(\Omega_k) \sim 1.5 \times 10^{-3}$

Slow-roll inflation

Previous inflation talk(s):

"- Inflation: solution the

- On its simplest versions, only needs to introduce a **single scalar field** *slow-rolling* **on a quasi-flat potential** *V*.

- On top of that, allows one to explain the density **fluctuations** origin and to predict their primordial power spectra, **scalar** \mathscr{P}_{ζ} and **tensor** \mathscr{P}_h , around the **CMB scale**

k*"

 $\mathcal{P}_{\zeta}(k \simeq k_{*}) \stackrel{\text{SRLO}}{\simeq} \mathcal{P}_{\zeta}(V_{*}, \{\varepsilon_{i*}\})$ $\mathcal{P}_{h}(k \simeq k_{*}) \stackrel{\text{SRLO}}{\simeq} \mathcal{P}_{h}(V_{*}, \{\varepsilon_{i*}\})$ $\phi_{*} \stackrel{\text{SRLO}}{\simeq} \phi_{*}(V, k_{*}) \qquad 51$

Potential <-> Power spectra

- Ingredients:
- The **potential** $\phi \to V(\phi, p)$
- Two necessary conditions so **slow-roll takes place**
 - **■** ε₁ < 1
 - **Trajectories reach** and **stay** in the SR region

- Recipe:
 - Potential parameters --> power spectra parameters

$$\phi \to V(\phi, p) \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_{\rm S}, n_{\rm S}, n_{\rm S,run}, r, n_{\rm T}, n_{\rm T,run}, N_{\rm e-folds} \dots\}$$

J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ. 5-6, 75 (2014), 1303.3787

MSSM-inflation potential

• The **potential** for *LLe* and *udd* reduces to

$$V(\phi) = \frac{1}{2}m_{\phi}^{2}(\phi)\phi^{2} - \sqrt{2}A_{6}(\phi)\frac{\lambda_{6}(\phi)\phi^{6}}{6M_{\rm Pl}^{3}} + \lambda_{6}(\phi)^{2}\frac{\phi^{10}}{M_{\rm Pl}^{6}}$$

where ϕ is the real **field value** associated to the inflaton, m_{ϕ} its **mass**, A_6 its trilinear **coupling** and anoth λ_6 **coupling** of order **1**. They are linked to the MSSM spectrum.

- Approximation usually done \circ **Tree-level** approximation $V_{\text{tree}} \Rightarrow \begin{array}{l} m_{\phi}^{2}(\phi) = m_{\phi}^{2} \\ A_{6}(\phi) = A_{6} \\ \lambda_{6}(\phi) = \lambda_{6} \end{array}$
- **<u>NEW</u> RGE** potential: V_{RGE} whose parameters depend on ϕ , on the gaugino masses and gauge couplings (well defined through the **Renormalization Group Equations** (**RGE**)). Varies whether the inflaton is along **udd** or **LLe**. **BP1** resp BP2: given gaugino masses

& aauae couplinas

Come-back to our hypothesis

- Remember slide 3...
 - Two necessary conditions so **slow-roll takes place**
 - *ε*₁ < 1

■ Trajectories get to and stay in the SR region

- Initial condition

 should be ok but what about
 ?
- Is the slow-roll region to thin Deltaphi/phi ~ phi0^2/Mp^2 to act like an attractor?

54

_

_

... not exhaustive

Dark matter: **neutralino** $\tilde{\chi}_1^0$

Dark matter: **neutralino** $\tilde{\chi}_1^0$

This specific A-funnel configuration is excluded by LHC searches
 => constraints on inflation from HEP

SUSY Overview

• SUSY can explain disparate phenomena and SM theoretical shortcomings

3

Global fit: first results

We have identified some points (motivated by [*]) compatible with m(Higgs), $\Omega_{cdm}h^2$ and (As,ns) for various dark matter annihilation channels

[*] S. Henrot-Versillé, et al. Phys. Rev. D 89, 055017 (2014), **1309.6958**

=> First steps toward a full exploration of the parameter space including all constraints

Global fit: first results

We have identified some points (motivated by [*]) for various dark matter annihilation processes [*] S. Henrot-Versillé, et al. Phys. Rev. D 89, 055017 (2014), **1309.6958**

=> First steps toward a full exploration of the parameter space including all constraints

How to get phi*?...

How to get phi*?

Slow-roll has to occur in a first place!

It is usually the case when there is a wide region of the potential where $\varepsilon_1 < 1$, independently on the initial conditions $(\phi, \dot{\phi})$ because slow-roll acts as an attractor.

Slow-roll has to occur in a first place!

It is usually the case when there is a wide region of the potential where $\varepsilon_1 < 1$, independently on the initial conditions $(\phi, \dot{\phi})$ because slow-roll acts as an attractor.

 $\dot{\phi}^{\text{SRLO}} = -M_{\text{Pl}} \frac{V_{\phi}}{\sqrt{3W}}$ attracted to $\ddot{\phi} + 3H\dot{\phi} + V_{\phi} = 0$

Slow-roll has to occur in a first place!

Usually the case when there is a wide region of the potential where $\varepsilon_1 < 1$, independently on the initial conditions $(\phi, \dot{\phi})$ because slow-roll acts as an attractor.

Slow-roll has to occur in a first place!

Usually the case when there is a wide region of the potential where $\varepsilon_1 < 1$, independently on the initial conditions $(\phi, \dot{\phi})$ because slow-roll acts as an attractor.

Now, we have all the ingredients to predict the cosmological observables of any potential:

$$\phi \to V(\phi, p), \ln R_{\rm rad} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_{\rm S}, n_{\rm S}, n_{\rm S,run}, r, n_{\rm T}, n_{\rm T,run}, N_{\rm e-folds} \dots\}$$

Conversely, given an observation, we can deduce the allowed potentials as done *J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ.* 5-6, 75 (2014), **1303.3787**
Now, we have all the ingredients to predict the cosmological observables of any potential:

$$\phi \to V(\phi, p), \ln R_{\rm rad} \implies \phi_* \implies \{\varepsilon_i *\} \implies \{A_{\rm S}, n_{\rm S}, n_{\rm S,run}, r, n_{\rm T}, n_{\rm T,run}, N_{\rm e-folds} \dots$$

Conversely, given an observation, we can deduce the allowed potentials as done J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ. 5-6, 75 (2014), **1303.3787**

Examples of potentials

Now, we have all the ingredients to predict the cosmological observables of any potential:

$$\phi \to V(\phi, p), \ln R_{\rm rad} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_{\rm S}, n_{\rm S}, n_{\rm S,run}, r, n_{\rm T}, n_{\rm T,run}, N_{\rm e-folds} \dots\}$$

Conversely, given an observation, we can deduce the allowed potentials as done J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ. 5-6, 75 (2014), **1303.3787**

Examples of potentials

Now, we have all the ingredients to predict the cosmological observables of any potential:

$$\phi \to V(\phi, p), \ln R_{\rm rad} \Longrightarrow \phi_* \Longrightarrow \{\varepsilon_i *\} \Longrightarrow \{A_{\rm S}, n_{\rm S}, n_{\rm S,run}, r, n_{\rm T}, n_{\rm T,run}, N_{\rm e-folds} \dots\}$$

Conversely, given an observation, we can deduce the allowed potentials as done J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ. 5-6, 75 (2014), **1303.3787**

Examples of potentials

Join the constraint from CMB to the other observables

Conclusions

• Beyond MSSM : eNMSSM, Multi-field inflation...