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Introduction

o There is yet no evidence for primordial black holes (PBHs), but their existence could be a very

interesting possibility : e.g. they can
have astrophysical implications : e.g. provide insights into the evolution of galaxies over
cosmic time, or provide information on the nature of dark;, ...
Shed light on the physics at early universe: e.g. primordial inhomogeneities, scale of inflation,

reheating, modify BBN, ...

o So far the studies of the reheating of universe considered either :
the standard scenario: inflaton produces thermal radiation
PBHs formed after a phase of an instantaneous inflaton reheating

o Thus the main goal: discuss the impacts of PBHs on the reheating dynamics, in
non-instantaneous decays of inflaton

the implication on the reheating temperature, and potentially constraint the parameter space



Outline of the talk:

@ Introduce the standard reheating : in the absence of PBHs

O Discuss PBHs reheating

» Monochromatic case : Impact of PBHs on the reheating temperature

» Comment on the extended mass distribution case

© Conclusions



Standard reheating

o We consider the inflaton potential of the form
A Inflation
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I'q, = ¢ decay rate, H = Hubble parameter, Mp = reduced Planck mass

o The solutions in terms of scale factor a [Garcia, Kaneta, Mambrini and Olive, JCAP 04 (2021), 012]
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o The reheating temperature, TgH, defined when p, = pg is then:

oe.g:n=41=5x10"", pepq = 1.45 x 10% GeV*
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PBHs reheating

o PBHs could have been produced during the early Universe due to various mechanisms
The common point for most of them is that the primordial cosmological energy density
fluctuations play a crucial role

o One possibility is that PBHs formed in a relatively short period of time

o In this scenario, the mass distribution of primordial black holes would be concentrated,

sharply-peaked, or monochromatic around a specific mass given by

AT p; M2
My, = YMy = —p—lg — 4ny—L | where y = ©°/?
3 K H

o is the equation of state at formation, p;, and H,, are respectively the total energy density and

Hubble parameter at PBHs formation



o It follows that for Schawrzchild PBH, the subsequent evolution of the mass due to evaporation :

d M T
Mn _ —e—1r- where &= i
dt M., 480

o The mass evolution in terms of the scale factor, in a Universe whose expansion is dominated by a

fluid with an equation of state P = wp is :
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o The lifetime 13y is:
3
TBH = - 7
3eMp;

o In the following, we consider PBHs forming after inflation and evaporating before BBN :

The lower bound on M,, is fixed by the inflationary energy scale H"™* ~ 5 x 10'® GeV

2
My, > ATy ~2.9%x108GeV = 1g
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The upper bound on M,, is set by BBN time scale: gy < N — tin — Min S 108g



o The initial energy density of PBH, p]ignH, is parameterized by 3 defined as

Pl
ﬁ — in in”’
Py + PR

B can be restricted by the constraints on the GWs generated by the density fluctuation due to
the inhomogeneities of the PBHs distribution and that avoids the back-reaction problem

[e.g. Papanikolaou, Vennin and Langlois, JCAP 03 (2021), 053]: 8 < 10~ (M;,/10%g) ™"/

We consider a stronger limit on 3 that ensures that the amount of generated GWs do not affect

BBN constraints on the effective nhumber of species

—1/2 ;.\ —17/24
[Doménech, Lin, and Sasaki, JCAP 04 (2021), 062]: f < 1.1 x 1076 (“gff) (%ﬂg)

o Thus the evolution of the system is determined by solving the following set of equations:

p¢ +3(1 —|—0)¢)Hp¢ = —(1 +a)¢)r¢,p¢,
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o Depending on y,;, M,,, and b, several scenarios evolution can be distinguished: e.g. =26
¢
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A\ Even if PBHs do not dominate, their evaporation can dominate the reheating process



e Results: Qualitatively, there two classes of solutions depending on Yo

o First class: y, < y°it PBH effects lead to Try > TlfH

Case TEH < Tlf;BH: tﬁH = time scale of reheating point without BHs (standard scenario)
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e Second class: y, > y°it. PBH effects lead to Tryy < qu{)H

Case TIfH > T¢+BH t(lgH = time scale of reheating point without BHs (standard scenario)
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e Try versus [ for n =4
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e Try versus 3 for n=16
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Extended mass case:

o PBHs could be formed over a prolonged period of time, thus would have an extended mass

distribution

o We consider the power-law distribution

CM'_aa for Mpyin < Mj < Miy, 2+4m

fau(M:. t) = : where o =
BH( iy /) ’ 1+

0, otherwise.

o The energy densities evolve according to :

[5¢+3(1+a)¢)Hp¢ = —(1—|—(D¢)|—¢p¢,
. a  [MndM
pBH +3HpPBH = —1§/~ ——Teu(M;, ) dM;,
a Jw dt

. a  (Msdm
pr+4Hpr = (1+w¢)r¢p _§A7 EfBH(Mi,ti)th

Py +PR+PBH = 3H2M,23.

o There no substantial difference in the results for monochromatic and extended mass distribution

Although the evolution of energy densities might be different, the Try depends mostly on the

evaporation point, gy — depends on largest mass which is M,, in both cases
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Conclusions

o We discussed how PBHs can affect the post-inflation reheating dynamics where the radiation bath is

simultaneously generated by :
decaying inflaton via y, ¢ f/f interactions, for potential V(¢) «< ¢", n > 4,
evaporating PBHs with initial energy fraction 3, and mass M,

o We analyzed the parameter space (yy, B, M;,) and shown that there is a extremely rich

phenomenology of different evolution scenarios ...

o PBHs can dominate the reheating process, and the energy budget of the universe — Try can

change drastically in the presence of PBH
» One important feature is that Try can be significantly modified without PBHs ever dominating

the energy budget of the Universe.
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o A is constrained by CBM [Drewes, Kang and Mun, JHEP 11 (2017), 072]

4
3T2rA

n?+n++/m+30(2+ n)(1 —ns)] "
2

n(2+ n)

Agyp ~2.19 X 102 is the amplitude of the scalar perturbations, r the tensor-to-scalar ratio, and ng the

spectral index.

o The field value at the end of the inflation can be written as

M n
Pend = PIn( —|—1>.

04 V33X

AME n "
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o Energy density at the end of inflation is then
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o Even when PBH do not dominate, their evaporation can dominate the reheating process

e e.g: for quartic potential, f < 3 x 10~° implies PBHs never dominate, BUT ...

OR
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Results: y, versus f3

o Summarizing, the dynamics is determined by: y,, B, and M,
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Extended Mass:

o The comoving number density of PBHs with initial masses within an infinitesimal range of
[M;, M; + dM;] remains constant until the time when they completely evaporate, resulting in a drop of

the number density to zero:

a3fBH(M, t)dM = aiSHfBH(M,', t,')d/\/l,'

o M(a) can be estimated as
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