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Introduction

There is yet no evidence for primordial black holes (PBHs), but their existence could be a very

interesting possibility : e.g. they can

� have astrophysical implications : e.g. provide insights into the evolution of galaxies over

cosmic time, or provide information on the nature of dark, ...

� Shed light on the physics at early universe: e.g. primordial inhomogeneities, scale of inflation,

reheating, modify BBN, ...

So far the studies of the reheating of universe considered either :

� the standard scenario: inflaton produces thermal radiation

� PBHs formed after a phase of an instantaneous inflaton reheating

Thus the main goal: discuss the impacts of PBHs on the reheating dynamics, in

non-instantaneous decays of inflaton

� the implication on the reheating temperature, and potentially constraint the parameter space



Outline of the talk:

1 Introduce the standard reheating : in the absence of PBHs

2 Discuss PBHs reheating

Monochromatic case : Impact of PBHs on the reheating temperature

Comment on the extended mass distribution case

3 Conclusions



Standard reheating

We consider the inflaton potential of the form

V(φ) = λM4
P

(
φ

MP

)n

, for even n

and the reheating is driven by yφ f̄ fφ interactions.

Evolution equations:

ρ̇φ +3H(1+ωφ )ρφ = −Γφ ρφ (1+ωφ ),

ρ̇R +4HρR = Γφ ρφ (1+ωφ ) ,

3H2M2
P = ρφ +ρR , ωφ =

n−2
n+2

,

(Source: arXiv:astro-ph/9906497)

Γφ = φ decay rate, H = Hubble parameter, MP = reduced Planck mass

The solutions in terms of scale factor a [Garcia, Kaneta, Mambrini and Olive, JCAP 04 (2021), 012]
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(
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The reheating temperature, T φ

RH, defined when ρφ = ρR is then:

T φ

RH ≃
(

30λ

gT π2

)1
4

(
y2

φ

8π

)n
4 (

αn

M4
p

)n
4

MP

e.g: n = 4,λ = 5×10−11, ρend = 1.45×1063 GeV4

yφ = 10−4 ⇒ TRH ≃ 107GeV and for yφ = 10−7 ⇒ TRH ≃ 10GeV
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PBHs reheating

PBHs could have been produced during the early Universe due to various mechanisms

� The common point for most of them is that the primordial cosmological energy density

fluctuations play a crucial role

One possibility is that PBHs formed in a relatively short period of time

In this scenario, the mass distribution of primordial black holes would be concentrated,

sharply-peaked, or monochromatic around a specific mass given by

Min = γ MH = γ
4π

3
ρin

H3
in

= 4πγ
M2

P

Hin
, where γ = ω

3/2

ω is the equation of state at formation, ρin and Hin are respectively the total energy density and

Hubble parameter at PBHs formation



It follows that for Schawrzchild PBH, the subsequent evolution of the mass due to evaporation :

dMBH

dt
=−ε

M4
P

M2
BH

, where ε =
πg∗
480

The mass evolution in terms of the scale factor, in a Universe whose expansion is dominated by a

fluid with an equation of state P = ωρ is :

M3
BH(a) = M3

in +
2εM2

PMin

4πγ(1+ω)

[
1−
(

a
ain

)3
2(1+ω)

]

The lifetime τBH is:

τBH =
M3

in
3εM4

P

In the following, we consider PBHs forming after inflation and evaporating before BBN :

� The lower bound on Min is fixed by the inflationary energy scale Hmax
I ∼ 5×1013 GeV

→ Min ≥ 4πγ
M2

p
Hmax

I
∼ 2.9×1023 GeV = 1g

� The upper bound on Min is set by BBN time scale: τBH < tBBN − tin → Min ≲ 108 g



The initial energy density of PBH, ρ in
BH, is parameterized by β defined as

β =
ρ in

BH
ρ in

φ
+ρ in

R
.

� β can be restricted by the constraints on the GWs generated by the density fluctuation due to

the inhomogeneities of the PBHs distribution and that avoids the back-reaction problem

[e.g. Papanikolaou, Vennin and Langlois, JCAP 03 (2021), 053]: β < 10−4
(
Min/109 g

)−1/4

� We consider a stronger limit on β that ensures that the amount of generated GWs do not affect

BBN constraints on the effective number of species

[Domènech, Lin, and Sasaki, JCAP 04 (2021), 062]: β < 1.1×10−6
(

ω3/2

0.2

)−1/2(
Min

104 g

)−17/24

Thus the evolution of the system is determined by solving the following set of equations:

ρ̇φ +3(1+ωφ )Hρφ = −(1+ωφ )Γφ ρφ ,

˙ρBH +3HρBH =
ρBH

MBH

dMBH

dt
θ (t − tin)θ (tev − t) ,

ρ̇R +4HρR = (1+ωφ )Γφ ρφ−
ρBH

MBH

dMBH

dt
θ (t − tin)θ (tev − t) ,

ρφ +ρR +ρBH = 3H2M2
P



Depending on yφ , Min, and β , several scenarios evolution can be distinguished: e.g. n = 6
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▲! Even if PBHs do not dominate, their evaporation can dominate the reheating process



• Results: Qualitatively, there two classes of solutions depending on yφ

• First class: yφ < ycrit, PBH effects lead to TRH ≥ T φ

RH
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φ
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• For n = 4, β
φ

crit represents also β BH
crit , value at which PBH dominate at reheating



• Second class: yφ > ycrit, PBH effects lead to TRH ≤ T φ
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• TRH versus β for n = 4
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• TRH versus β for n = 6
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Extended mass case:

PBHs could be formed over a prolonged period of time, thus would have an extended mass

distribution

We consider the power-law distribution

fBH(Mi , ti) =

CM−α

i , for Mmin ≤ Mi ≤ Min ,

0, otherwise .
, where α =

2+4ω

1+ω

The energy densities evolve according to :

ρ̇φ +3(1+ωφ )Hρφ = −(1+ωφ )Γφ ρφ ,

ρ̇BH +3HρBH =
a3

in
a3

∫ Min

M̃

dM
dt

fBH(Mi , ti)dMi ,

ρ̇R +4HρR = (1+ωφ )Γφ ρφ −
a3

in
a3

∫ Min

M̃

dM
dt

fBH(Mi , ti)dMi ,

ρφ +ρR +ρBH = 3H2M2
P .

There no substantial difference in the results for monochromatic and extended mass distribution

� Although the evolution of energy densities might be different, the TRH depends mostly on the

evaporation point, τBH → depends on largest mass which is Min in both cases
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Conclusions

We discussed how PBHs can affect the post-inflation reheating dynamics where the radiation bath is

simultaneously generated by :

� decaying inflaton via yφ φ f̄ f interactions, for potential V (φ) ∝ φ n, n ≥ 4,

� evaporating PBHs with initial energy fraction β , and mass Min

We analyzed the parameter space (yφ , β , Min) and shown that there is a extremely rich

phenomenology of different evolution scenarios ...

PBHs can dominate the reheating process, and the energy budget of the universe → TRH can

change drastically in the presence of PBH

� One important feature is that TRH can be significantly modified without PBHs ever dominating

the energy budget of the Universe.
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λ is constrained by CBM [Drewes, Kang and Mun, JHEP 11 (2017), 072]

λ = α
n
1

(
3π2rAR

2

)4
[

n2 +n+
√

n2 +3α(2+n)(1−ns)

n(2+n)

]n

AR ∼ 2.19×10−9 is the amplitude of the scalar perturbations, r the tensor-to-scalar ratio, and ns the

spectral index.

The field value at the end of the inflation can be written as

φend =
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α1
ln

(
n√
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+1
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.
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Even when PBH do not dominate, their evaporation can dominate the reheating process

• e.g: for quartic potential, β ≲ 3×10−6 implies PBHs never dominate, BUT ...
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Results: yφ versus β

Summarizing, the dynamics is determined by: yφ , β , and Min
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BBN

n = 4
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Extended Mass:

The comoving number density of PBHs with initial masses within an infinitesimal range of

[Mi ,Mi +dMi ] remains constant until the time when they completely evaporate, resulting in a drop of

the number density to zero:

a3fBH(M, t)dM = a3
infBH(Mi , ti)dMi

M̃(a) can be estimated as

M̃(a) = Mi

(
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