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A novel modality to investigate brain activity?
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Partners:

Started Spring 2021 (about 2 out of 3.5 yrs); ~3.4M€

1. Production of 129,131,133mXe

2. Hyperpolarisation of mXe via SEOP 
(Spin Exchange Optical Pumping)

3. Inhalation by test subject 

4. Detection of emitted gammas and 
image reconstruction
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Production of mXe (with M. Kowalska at CERN)

• Production of 129mXe and 131mXe via neutron activation of 128Xe and 130Xe at the ILL 
and MARIA high-flux reactors (paper submitted soon)

• Production at ISOLDE / MEDICIS (CERN)

• From the decay of Na131I
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Where do we stand?

• Prototype finished and delivered (soon) to 
Geneva.

• Prototype to be re-assembled, tested and 
calibrated in 2023

• First in vivo experiments in 2024

• Target organ: brain, but others possible

• Target pathology: ischemic stroke 
(relatively simple animal model and 
clinically relevant)



Imaging the brain
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From your body’s perspective,
your brain is rather expensive

‣ The brain accounts for approximately 
2% of the total body weight but for 
about 20% of the whole body glucose 
utilisation.

‣ Brain glucose uptake to body’s resting 
metabolic rate (Kuzawa et al., PNAS 2014).

19.1% in adults 
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Synaptic function is energetically 
expensive but not particularly reliable

‣ Neurotransmission is a 
stochastic process with 
relatively low prob. (typically 
~10% to 40%).

Harris et al., Neuron 2012

‣ This configuration can be 
explained by representing 
the optimal energetic 
design. 

Maximises information 
transmission

Optimal energetic design



Optimal energetic design of CNS synapses 
requires failures of presynaptic release
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All these results can be reproduced in an 
Hodgkin-Huxley model of LGN cells

linear NMDAR I-V relation
non-linear NMDAR I-V relation
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What happens at the next synapse 
in the visual pathway?
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‣ ‘Imperfect’ action potential transmission 
at relay synapses in the visual pathway 
(postsynaptic side, i.e. number of 
receptors inserted in the membrane) can 
be explained as a way to maximise not 
information transfer (bits/sec) but 
information over concomitant energy 
consumption (bits/ATP).

Figure 4

b

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Firing frequency (Hz)

c

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

gsyn / (normal gsyn)

0 2 4 6 8 10 12
0

20

40

60

80

100

120

gsyn / (normal gsyn)

a

0 2 4 6 8 10 12
gsyn / (normal gsyn)

0

100

200

300

400

500

600

0 2 4 6 8 10 12
0

5

10

15

20

25

30

gsyn / (normal gsyn)

e f

0 2 4 6 8 10 12
0

20

40

60

80

100

120

gsyn / (normal gsyn)

d



How is learning in neural networks 
affected by energetic constraints?

‣ Network of Hawkes neurones with reset after spiking;



How is learning in neural networks 
affected by energetic constraints?

‣ Network of Hawkes neurones with reset after spiking;

‣ Maximise Mutual Information (MI) between inputs and outputs, 
with an additional “energy” term (E): f = MI - E;γ ⋅



How is learning in neural networks 
affected by energetic constraints?

‣ Network of Hawkes neurones with reset after spiking;

‣ Maximise Mutual Information (MI) between inputs and outputs, 
with an additional “energy” term (E): f = MI - E;γ ⋅

‣ Derive learning rules as a gradient descent optimising this 
function f.
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Grytskyy and Jolivet, in preparation

Increasing energetic 
constraint

The quality of inference decreases by ~1/3

Rare inputs 
evoke weak  
activity (dark)

Frequent inputs 
evoke strong  
activity (light)

Rare inputs 
evoke strong  
activity (dark)

Frequent inputs 
evoke weak  
activity (light)



How is learning in neural networks 
affected by energetic constraints?

‣ It is possible to derive learning rules that are reminiscent of 
synaptic learning rules observed biologically; 

‣ But they are three-factor rules, i.e. they include the pre- and 
post-synaptic activities, and a third global term. 
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Computational studies of the trade-offs between
information flow, learning and energy 
consumption at synapses and in networks

Developing a new type of neural 
interface (IN-FET)
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