LUCIEN HEURTIER

Institut Pascal — Astroparticle Symposium 2023

Science and Technology Facilities Council

In collaboration with

Give him a job!

Louis HAMAIDE (University College of London)

Shi-Qian HU (King's College of London)

Andrew CHEEK (Astrocent, Warsaw)

Transition Energy Loss

In the vacuum: S. R. Coleman, Phys. Rev. D 15, 2929 (1977)

The bubble expands (O(4) symmetric bubble) Energy = Kinetic

IN A THERMAL BATH: A. D. Linde, Phys. Lett. B 100, 37 (1981).

The bubble is static (O(3)) symmetric bubble

Energy from Thermostat

Transition Energy Loss

IN (COLD) GR: Coleman & De Luccia, Phys. Rev. D 21, 3305 (1980).

The metric and bubble adjust to conserve energy

Energy = Metric Deformation

QUESTION: What happens around a radiating Black Hole?

QUESTION: What happens around a radiating Black Hole?

So Far: Only considered in very extreme situations...

BH radiating in the vacuum (Unruh vacuum)

No definite answer. Partial results only obtained in 2D.

BH in thermal equilibrium with the plasma (Hartle-Hawking vacuum)

The BH and the plasma both behave as thermostats.

$$I_{\rm b}[T] = \beta \int dx^3 \sqrt{-h} \left(-\frac{R}{16\pi G} + \frac{1}{2} h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + V(\phi) \right) + \text{Bckgd terms} + \text{Conical deficit}$$
if $\beta \neq \beta_H$

+ Bckgd terms
+ Conical deficit
if
$$\beta \neq \beta_H$$

$$T \longrightarrow F$$

$$I_{\rm b}[T] = \frac{\mathcal{A}_+}{4G} - \frac{\mathcal{A}_-}{4G} = I_{\rm b}[T_H]$$
 Gregory, Moss, and Withers, JHEP 03, 081(2014)

Only used with Hartle-Hawking so far...

QUESTION: What happens around a radiating Black Hole?

So Far: Only considered in very extreme situations...

BH radiating in the vacuum (Unruh vacuum)

No definite answer. Partial results only obtained in 2D.

BH in thermal equilibrium with the plasma (Hartle-Hawking vacuum)

The BH and the plasma both behave as thermostats.

Reality stands in between the two.

Primordial Black Holes

ARE

POWERFUL RADIATORS

IN

Cosmology

COMMON BELIEF

IN REALITY

Hawking Radiation heats the ambient plasma locally

He et al. $JCAP \ 01 \ (2023) \ 027$

IN REALITY

Hawking Radiation heats the ambient plasma locally Our best guess:

$$\Gamma(T) \sim \alpha^2 T \sqrt{\frac{T}{T_H}} \,.$$

$$dP \sim \Gamma(T) e^{-(r-r_H)\Gamma(T)} dr$$

Physical realisation of

$$T \xrightarrow{T_H} \bigvee_{\mathcal{E}} \bigvee_{\mathcal{E}}$$

IN REALITY

Hawking Radiation heats the ambient plasma locally

$$I_{\rm b}[T] = \frac{\mathcal{A}_{+}}{4G} - \frac{\mathcal{A}_{-}}{4G} = I_{\rm b}[T_{H}]$$
 (*)

To calculate the rate:

$$\Gamma_{\text{FVD}}^{\text{HH}} \equiv (GM_{+})^{-1} \left(\frac{I_{\text{b}}[T_{H}]}{2\pi}\right)^{1/2} \exp\left(-I_{\text{b}}[T_{H}]\right) .$$

$$T_{H}$$

Linde's result

$$\frac{\Gamma}{V} = T \left(\frac{S_3(\varphi)}{2\pi T} \right)^{3/2} \exp\left[-S_3(\varphi)/T \right]$$

Generalisation to arbitrary T

$$\Gamma_{\text{FVD}}(T) \approx T \left(\frac{I_{\text{b}}[T]}{2\pi}\right)^{1/2} \exp\left(-I_{\text{b}}[T]\right),$$

$$\approx T \left(\frac{I_{\text{b}}[T_{H}]}{2\pi}\right)^{1/2} \exp\left(-I_{\text{b}}[T_{H}]\right),$$
(*)

Rate to be compared to the evaporation rate...

AN EXAMPLE: THE EW VACUUM

Our Universe may be metastable (at $\sim 2\sigma$)

AN EXAMPLE: THE EW VACUUM

Our Universe may be metastable (at $\sim 2\sigma$)

$$P_{\text{FVD}} \equiv 1 - e^{-\Gamma_{\text{FVD}}\Delta t}$$

Using $T_{plateau}(M)$ $\Delta t \sim \Gamma_{\rm ev}^{-1}$

$$\Delta t \sim \Gamma_{\rm ev}^{-1}$$

$$P_{\text{FVD}}(M) = 1 - e^{-\Gamma_{\text{FVD}}(T_{\text{plateau}})/\Gamma_{\text{ev}}}$$

Using
$$T_{max}$$
 $P_{\text{FVD}} \approx 1 \text{ as long as } \Delta t \lesssim 10^{-6} \times \Gamma_{\text{ev}}^{-1}$.

Constraint:

$$\beta_{\rm PBH} = \frac{4}{3} \frac{M N_{\rm PBH} H_0^3}{s_0 T_f} \approx 2 \times 10^{-80} N_{\rm PBH} \left(\frac{M}{M_{\star}}\right)^{3/2}$$

 $N_{\rm PBH} P_d < 2.7$

AN EXAMPLE: THE EW VACUUM

Our Universe may be metastable (at $\sim 2\sigma$)

Conclusion

Our Universe may be metastable (at $\sim 2\sigma$)

PBHs reheat the Universe locally, leading to a hot spot

The hot-spot temperature can be used to calculate a FVD rate

The rate can be calculated at different times across the hot spot history

Results confirm the validity of the Euclidean formalism

Many refinements needed, but a first step towards a realistic calculation of FVD rates around PBHs...

